956 resultados para MITOCHONDRIAL RIBOSOMAL-PROTEINS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In most multicellular organisms, the decision to undergo programmed cell death in response to cellular damage or developmental cues is typically transmitted through mitochondria. It has been suggested that an exception is the apoptotic pathway of Drosophila melanogaster, in which the role of mitochondria remains unclear. Although IAP antagonists in Drosophila such as Reaper, Hid and Grim may induce cell death without mitochondrial membrane permeabilization, it is surprising that all three localize to mitochondria. Moreover, induction of Reaper and Hid appears to result in mitochondrial fragmentation during Drosophila cell death. Most importantly, disruption of mitochondrial fission can inhibit Reaper and Hid-induced cell death, suggesting that alterations in mitochondrial dynamics can modulate cell death in fly cells. We report here that Drosophila Reaper can induce mitochondrial fragmentation by binding to and inhibiting the pro-fusion protein MFN2 and its Drosophila counterpart dMFN/Marf. Our in vitro and in vivo analyses reveal that dMFN overexpression can inhibit cell death induced by Reaper or γ-irradiation. In addition, knockdown of dMFN causes a striking loss of adult wing tissue and significant apoptosis in the developing wing discs. Our findings are consistent with a growing body of work describing a role for mitochondrial fission and fusion machinery in the decision of cells to die.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The short arms of the ten acrocentric human chromosomes share several repetitive DNAs, including ribosomal RNA genes (rDNA). The rDNA arrays correspond to nucleolar organizing regions that coalesce each cell cycle to form the nucleolus. Telomere disruption by expressing a mutant version of telomere binding protein TRF2 (dnTRF2) causes non-random acrocentric fusions, as well as large-scale nucleolar defects. The mechanisms responsible for acrocentric chromosome sensitivity to dysfunctional telomeres are unclear. In this study, we show that TRF2 normally associates with the nucleolus and rDNA. However, when telomeres are crippled by dnTRF2 or RNAi knockdown of TRF2, gross nucleolar and chromosomal changes occur. We used the controllable dnTRF2 system to precisely dissect the timing and progression of nucleolar and chromosomal instability induced by telomere dysfunction, demonstrating that nucleolar changes precede the DNA damage and morphological changes that occur at acrocentric short arms. The rDNA repeat arrays on the short arms decondense, and are coated by RNA polymerase I transcription binding factor UBF, physically linking acrocentrics to one another as they become fusogenic. These results highlight the importance of telomere function in nucleolar stability and structural integrity of acrocentric chromosomes, particularly the rDNA arrays. Telomeric stress is widely accepted to cause DNA damage at chromosome ends, but our findings suggest that it also disrupts chromosome structure beyond the telomere region, specifically within the rDNA arrays located on acrocentric chromosomes. These results have relevance for Robertsonian translocation formation in humans and mechanisms by which acrocentric-acrocentric fusions are promoted by DNA damage and repair.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: The MitoChip v2.0 resequencing array is an array-based technique allowing for accurate and complete sequencing of the mitochondrial genome. No studies have investigated mitochondrial mutation in salivary gland adenoid cystic carcinomas. METHODOLOGY: The entire mitochondrial genome of 22 salivary gland adenoid cystic carcinomas (ACC) of salivary glands and matched leukocyte DNA was sequenced to determine the frequency and distribution of mitochondrial mutations in ACC tumors. PRINCIPAL FINDINGS: Seventeen of 22 ACCs (77%) carried mitochondrial mutations, ranging in number from 1 to 37 mutations. A disproportionate number of mutations occurred in the D-loop. Twelve of 17 tumors (70.6%) carried mutations resulting in amino acid changes of translated proteins. Nine of 17 tumors (52.9%) with a mutation carried an amino acid changing mutation in the nicotinamide adenine dinucleotide dehydrogenase (NADH) complex. CONCLUSIONS/SIGNIFICANCE: Mitochondrial mutation is frequent in salivary ACCs. The high incidence of amino acid changing mutations implicates alterations in aerobic respiration in ACC carcinogenesis. D-loop mutations are of unclear significance, but may be associated with alterations in transcription or replication.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mitochondria are responsible for producing the vast majority of cellular ATP, and are therefore critical to organismal health [1]. They contain thir own genomes (mtDNA) which encode 13 proteins that are all subunits of the mitochondrial respiratory chain (MRC) and are essential for oxidative phosphorylation [2]. mtDNA is present in multiple copies per cell, usually between 103 and 104 , though this number is reduced during certain developmental stages [3, 4]. The health of the mitochondrial genome is also important to the health of the organism, as mutations in mtDNA lead to human diseases that collectively affect approximately 1 in 4000 people [5, 6]. mtDNA is more susceptible than nuclear DNA (nucDNA) to damage by many environmental pollutants, for reasons including the absence of Nucleotide Excision Repair (NER) in the mitochondria [7]. NER is a highly functionally conserved DNA repair pathway that removes bulky, helix distorting lesions such as those caused by ultraviolet C (UVC) radiation and also many environmental toxicants, including benzo[a]pyrene (BaP) [8]. While these lesions cannot be repaired, they are slowly removed through a process that involves mitochondrial dynamics and autophagy [9, 10]. However, when present during development in C. elegans, this damage reduces mtDNA copy number and ATP levels [11]. We hypothesize that this damage, when present during development, will result in mitochondrial dysfunction and increase the potential for adverse outcomes later in life.

To test this hypothesis, 1st larval stage (L1) C. elegans are exposed to 3 doses of 7.5J/m2 ultraviolet C radiation 24 hours apart, leading to the accumulation of mtDNA damage [9, 11]. After exposure, many mitochondrial endpoints are assessed at multiple time points later in life. mtDNA and nucDNA damage levels and genome copy numbers are measured via QPCR and real-time PCR , respectively, every 2 day for 10 days. Steady state ATP levels are measured via luciferase expressing reporter strains and traditional ATP extraction methods. Oxygen consumption is measured using a Seahorse XFe24 extra cellular flux analyzer. Gene expression changes are measured via real time PCR and targeted metabolomics via LC-MS are used to investigate changes in organic acid, amino acid and acyl-carnitine levels. Lastly, nematode developmental delay is assessed as growth, and measured via imaging and COPAS biosort.

I have found that despite being removed, UVC induced mtDNA damage during development leads to persistent deficits in energy production later in life. mtDNA copy number is permanently reduced, as are ATP levels, though oxygen consumption is increased, indicating inefficient or uncoupled respiration. Metabolomic data and mutant sensitivity indicate a role for NADPH and oxidative stress in these results, and exposed nematodes are more sensitive to the mitochondrial poison rotenone later in life. These results fit with the developmental origin of health and disease hypothesis, and show the potential for environmental exposures to have lasting effects on mitochondrial function.

Lastly, we are currently working to investigate the potential for irreparable mtDNA lesions to drive mutagenesis in mtDNA. Mutations in mtDNA lead to a wide range of diseases, yet we currently do not understand the environmental component of what causes them. In vitro evidence suggests that UVC induced thymine dimers can be mutagenic [12]. We are using duplex sequencing of C. elegans mtDNA to determine mutation rates in nematodes exposed to our serial UVC protocol. Furthermore, by including mutant strains deficient in mitochondrial fission and mitophagy, we hope to determine if deficiencies in these processes will further increase mtDNA mutation rates, as they are implicated in human diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ferns are one of the few remaining major clades of land plants for which a complete genome sequence is lacking. Knowledge of genome space in ferns will enable broad-scale comparative analyses of land plant genes and genomes, provide insights into genome evolution across green plants, and shed light on genetic and genomic features that characterize ferns, such as their high chromosome numbers and large genome sizes. As part of an initial exploration into fern genome space, we used a whole genome shotgun sequencing approach to obtain low-density coverage (∼0.4X to 2X) for six fern species from the Polypodiales (Ceratopteris, Pteridium, Polypodium, Cystopteris), Cyatheales (Plagiogyria), and Gleicheniales (Dipteris). We explore these data to characterize the proportion of the nuclear genome represented by repetitive sequences (including DNA transposons, retrotransposons, ribosomal DNA, and simple repeats) and protein-coding genes, and to extract chloroplast and mitochondrial genome sequences. Such initial sweeps of fern genomes can provide information useful for selecting a promising candidate fern species for whole genome sequencing. We also describe variation of genomic traits across our sample and highlight some differences and similarities in repeat structure between ferns and seed plants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DNA barcoding offers an efficient way to determine species identification and to measure biodiversity. For dinoflagellates, an ancient alveolate group of about 2000 described extant species, DNA barcoding studies have revealed large amounts of unrecognized species diversity, most of which is not represented in culture collections. To date, two mitochondrial gene markers, Cytochrome Oxidase I (COI) and Cytochrome b oxidase (COB), have been used to assess DNA barcoding in dinoflagellates, and both failed to amplify all taxa and suffered from low resolution. Nevertheless, both genes yielded many examples of morphospecies showing cryptic speciation and morphologically distinct named species being genetically similar, highlighting the need for a common marker. For example, a large number of cultured Symbiodinium strains have neither taxonomic identification, nor a common measure of diversity that can be used to compare this genus to other dinoflagellates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Insulin-like growth factor-I (IGF-I) signaling is strongly associated with cell growth and regulates the rate of synthesis of the rRNA precursor, the first and the key stage of ribosome biogenesis. In a screen for mediators of IGF-I signaling in cancer, we recently identified several ribosome-related proteins, including NEP1 (nucleolar essential protein 1) and WDR3 (WD repeat 3), whose homologues in yeast function in ribosome processing. The WDR3 gene and its locus on chromosome 1p12-13 have previously been linked with malignancy. Here we show that IGF-I induces expression of WDR3 in transformed cells. WDR3 depletion causes defects in ribosome biogenesis by affecting 18 S rRNA processing and also causes a transient down-regulation of precursor rRNA levels with moderate repression of RNA polymerase I activity. Suppression of WDR3 in cells expressing functional p53 reduced proliferation and arrested cells in the G1 phase of the cell cycle. This was associated with activation of p53 and sequestration of MDM2 by ribosomal protein L11. Cells lacking functional p53 did not undergo cell cycle arrest upon suppression of WDR3. Overall, the data indicate that WDR3 has an essential function in 40 S ribosomal subunit synthesis and in ribosomal stress signaling to p53-mediated regulation of cell cycle progression in cancer cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Alternative NADH dehydrogenases (NADH:ubiquinone oxidoreductases) are single subunit respiratory chain enzymes found in plant and fungal mitochondria and in many bacteria. It is unclear how these peripheral membrane proteins interact with their hydrophobic substrate ubiquinone. Known inhibitors of alternative NADH dehydrogenases bind with rather low affinities. We have identified 1-hydroxy-2-dodecyl-4(1H)quinolone as a high affinity inhibitor of alternative NADH dehydrogenase from Yarrowia lipolytica. Using this compound, we have analyzed the bisubstrate and inhibition kinetics for NADH and decylubiquinone. We found that the kinetics of alternative NADH dehydrogenase follow a ping-pong mechanism. This suggests that NADH and the ubiquinone headgroup interact with the same binding pocket in an alternating fashion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Leucine zipper/EF hand-containing transmembrane-1 (LETM1) is a mitochondrial inner membrane protein that was first identified in Wolf-Hirschhorn syndrome, and was deleted in nearly all patients with the syndrome. LETM1 encodes for the human homologue of yeast Mdm38p, which is a mitochondria-shaping protein of unclear function. Here, we describe LETM1-mediated regulation of mitochondrial ATP production and biogenesis. We show that LETM1 overexpression can induce necrotic cell death in HeLa cells, in which LETM1 reduces mitochondria) biogenesis and ATP production. LETM1 acts as an anchor protein and associates with mitochondrial ribosome protein L36. Adenovirus-mediated overexpression of LETM1 reduced mitochondrial mass and expression of many mitochondrial proteins. LETM1-mediated inhibition of mitochondrial biogenesis enhanced glycolytic ATP supply and activated protein kinase B activity and cell survival signaling. The expression levels of LETM1 were significantly increased in multiple human cancer tissues compared with normals. These data suggest that LETM1 serves as an anchor protein for complex formation with the mitochondrial ribosome and regulates mitochondrial biogenesis. The increased expression of LETM1 in human cancer suggests that deregulation of LETM1 is a key feature of tumorigenesis. [Cancer Res 2009;69(8):3397-404]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Resistance to cisplatin chemotherapy remains a major hurdle preventing effective treatment of many solid cancers. BAX and BAK are pivotal regulators of the mitochondrial apoptosis pathway, however little is known regarding their regulation in cisplatin resistant cells. Cisplatin induces DNA damage in both sensitive and resistant cells, however the latter exhibits a failure to initiate N-terminal exposure of mitochondrial BAK or mitochondrial SMAC release. Both phenotypes are highly sensitive to mitochondrial permeabilisation induced by exogenous BH3 domain peptides derived from BID, BIM, NOXA (which targets MCL-1 and A1), and there is no significant change in their prosurvival BCL2 protein expression profiles. Obatoclax, a small molecule inhibitor of pro-survival BCL-2 family proteins including MCL-1, decreases cell viability irrespective of platinum resistance status across a panel of cell lines selected for oxaliplatin resistance. In summary, selection for platinum resistance is associated with a block of mitochondrial death signalling upstream of BAX/BAK activation. Conservation of sensitivity to BH3 domain induced apoptosis can be exploited by agents such as obatoclax, which directly target the mitochondria and BCL-2 family.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mitochondrial dysfunction has been proposed to play a role in the pathogenesis of Parkinson s disease (PD) Supportive of this hypothesis several genetic variants that regulate mitochondrial function and homeostasis have been described to alter PD susceptibility A recent report demonstrated association of a single nucleotide polymorphism in the mitochondrial translation initiation factor 3 (MTIF3) gene with PD risk The protein encoded by this nuclear gene is essential for initiation complex formation on the mitochondrial 55S ribosome and regulates translation of proteins within the mitochondria Changes in the function or expression of the MTIF3 protein may result in altered mitochondrial function ATP production or formation of reactive oxygen species thereby affecting susceptibility to PD We examined the association of rs7669 with sporadic PD in three Caucasian case control series (n = 2434) A significant association was observed in the largest series (Norwegian n = 1650) when comparing CC vs CT/TT genotypes with the Irish and US series having a similar but non-significant trend The combined series also revealed an association with risk of PD (P = 0 01) supporting the possible involvement of this gene in PD etiology Published by Elsevier Ireland Ltd

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The current morphological classification of the Demospongiae G4 clade was tested using large subunit ribosomal RNA (LSU rRNA) sequences from 119 taxa. Fifty-three mitochondrial cytochrome oxidase 1 (CO1) barcoding sequences were also analysed to test whether the 28S phylogeny could be recovered using an independent gene. This is the largest and most comprehensive study of the Demospongiae G4 clade. The 28S and CO1 genetrees result in congruent clades but conflict with the current morphological classification. The results confirm the polyphyly of Halichondrida, Hadromerida, Dictyonellidae, Axinellidae and Poecilosclerida and show that several of the characters used in morphological classifications are homoplasious. Robust clades are clearly shown and a new hypothesis for relationships of taxa allocated to G4 is proposed. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Complex I is the only component of the eukaryotic respiratory chain of which no high-resolution structure is yet available. A notable feature of mitochondrial complex I is the so-called active/de-active conformational transition of the idle enzyme from the active (A) to the de-active, (D) form. Using an amine- and sulfhydryl-reactive crosslinker of 6.8 Å length (SPDP) we found that in the D-form of complex I the ND3 subunit crosslinked to the 39 kDa (NDUFA9) subunit. These proteins could not be crosslinked in the A-form. Most likely, both subunits are closely located in the critical junction region connecting the peripheral hydrophilic domain to the membrane arm of the enzyme where the entrance path for substrate ubiquinone is and where energy transduction takes place.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increased expression of Induced-by-High-Glucose 1 (IHG-1) associates with tubulointerstitial fibrosis in diabetic nephropathy. IHG-1 amplifies TGF-ß1 signaling, but the functions of this highly-conserved protein are not well understood. IHG-1 contains a putative mitochondrial-localization domain, and here we report that IHG-1 is specifically localized to mitochondria. IHG-1 overexpression increased mitochondrial mass and stabilized peroxisome proliferator-activated receptor ? coactivator-1a (PGC-1a). Conversely, inhibition of IHG-1 expression decreased mitochondrial mass, downregulated mitochondrial proteins, and PGC-1a-regulated transcription factors, including nuclear respiratory factor 1 and mitochondrial transcription factor A (TFAM), and reduced activity of the TFAM promoter. In the unilateral ureteral obstruction model, we observed higher PGC-1a protein expression and IHG-1 levels with fibrosis. In a gene-expression database, we noted that renal biopsies of human diabetic nephropathy demonstrated higher expression of genes encoding key mitochondrial proteins, including cytochrome c and manganese superoxide dismutase, compared with control biopsies. In summary, these data suggest that IHG-1 increases mitochondrial biogenesis by promoting PGC-1a-dependent processes, potentially contributing to the pathogenesis of renal fibrosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AIMS: Epigenetic modifications, such as DNA methylation, can influence the risk of developing kidney disease. We studied methylation profiles in genes related to mitochondrial function to assess whether differences in these epigenetic features were associated with diabetic kidney disease in people with Type 1 diabetes.

METHODS: A case-control association study was undertaken (n = 196 individuals with diabetic kidney disease vs. n = 246 individuals without renal disease). Participants were White and diagnosed with Type 1 diabetes before 31 years of age. Genes that encode mitochondrial proteins (n = 780) were downloaded from mitoproteome. org. DNA methylation profiles from blood-derived DNA were generated using the Illumina Infinium HumanMethylation450 (262 samples) and Illumina Infinium HumanMethylation27 (192 samples) arrays. Beta values (β) were calculated and quality control was conducted, including evaluating blind duplicate DNA samples.

RESULTS: Fifty-four Cytosine-phosphate-Guanine probes across 51 unique genes were significantly associated (P ≤ 10(-8) ) with diabetic kidney disease across both the 450K and the 27K methylation arrays. A subanalysis, employing the 450K array, identified 755 Cytosine-phosphate-Guanine probes in 374 genes that were significantly associated (P ≤ 10(-8) ) with end-stage renal disease. Forty-six of the top-ranked variants for diabetic kidney disease were also identified as being differentially methylated in individuals with end-stage renal disease. The largest change in methylation (Δβ = 0.2) was observed for cg03169527 in the TAMM41 gene, chromosome 3p25.2. Three genes, PMPCB, TSFM and AUH, were observed with differential methylation at multiple Cytosine-phosphate-Guanine sites each (P < 10(-12) ).

CONCLUSIONS: Differential methylation in genes that influence mitochondrial function are associated with kidney disease in individuals with Type 1 diabetes.