476 resultados para MASSIF


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Santa Cruz massif, which forms part of the Ipanema mafic/ultramafic Complex, Minas Gerais, Brazil, has an exposed upward sequence of metadunite, metaharzburgite (including three separate chromitite layers), metapyroxenite, metagabbro, and metaanorthosite. Primary igneous chromite grains in the main chromitite layer are poikiloblastic and tectonically fragmented, and have a narrow (10-20 mum) margin of chromian spinel. Cataclased chromite fragments are extensively replaced and mantled by chromian spinel; they have a composite margin comprised of an inner zone of more aluminous spinel and an euhedral outer zone of more Cr-rich spinel, representing granulite and amphibolite facies metamorphic events, respectively. The contents of platinum-group elements (PGE) and Au in chromite separates are relatively high (Os 45, Ir 23, Ru 136, Rh 19, Pt 98, Pd 63, and Au 83 ppb), and significantly enriched (similar to 4x) over whole rock values. Platinum-group minerals are not observed and micrometre-sized inclusions of sulfide minerals (chalcopyrite and pentlandite) in relict chromite are rare. However, comparison of mineral proportions in the separated chromite and whole rock shows that the precious metals are hosted predominantly in the relict igneous chromite grains, rather than the secondary chromian spinel and primary and secondary Mg-rich silicates. The major element composition and average chondrite-normalized PGE pattern of the separated chromite correspond to S-poor stratiform chromitite. We suggest that the precious metals accumulated with chromite during crystallization of a S-poor magma, and were not remobilized in the relict chromite during the subsequent high grade metamorphism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Brazil does not have working platinum mines, nor even large reserves of the platinum metals, but there is platinum in Brazil. In this paper, four massifs (mafic/ultramafic complexes) in eastern Brazil, in the states of Minas Gerais and Ceara, where platinum is found will be described. Three of these massifs contain concentrations of platinum group minerals or platinum group elements, and gold, associated with the chromitite rock found there. In the fourth massif, in Minas Gerais State, the platinum group elements are found in alluvial deposits at the Bom Sucesso occurrence. This placer is currently being studied.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Geochemical data for granulite terrain are presented from the northernmost portion of the Guaxupe Massif, at Mantiqueira Province, SE Brazil. Several types of granulites are recognized in the area: basic, intermediate and acid granulite. Major and trace elements (including REE) point to only one ma,oma source for these granulites generated at different times. Geochemical data point to plagioclase and apatite fractionation as responsable in the REE behaviour in intermediate and more basic rocks. Overall composition of the Guaxupe Granulites is similar to average composition of the lower crust.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A review is presented concerning Archaean granulites occurring in some old domains of the South American Platform, which was consolidated at the end of the Brazilian Cycle (900-500 Ma). The rocks occur in different geotectonic environments and show variable ages, structures and lithological associations. The most important complexes are the Atlantic Granulite Belt in the São Francisco Craton and the Goias Granulite Belt in the Central Goias Massif, both several hundred kilometres long. The former is composed of the Caraibas Complex, the Jequié Complex, the Salvador Complex and several minor granulite occurrences along the Brazilian coast in the States of Espírito Santo and Rio de Janeiro. The latter includes the large basic-ultrabasic complexes of Barro Alto, Tocantins and Canabrava. Both belts consist of massive or foliated rocks, banded or homogeneous and varying from acidic to ultrabasic in composition. They are the result of metamorphism affecting diversified supra- and infracrustal material. The Atlantic Granulite Belt lies between greenstone/granite terrains which show ovoid and boomerang-type dome structures. The contacts between both are either tectonic or transitional. Another occurrence of Archaean granulites comprises intercalations of palaeosomes and melanosomes within migmatites and anatectic rocks. These vary in size from small lenses to irregular complexes which may attain sizes of several hundred square kilometres. Apart from migmatites, they are associated with gneisses, schists and granitoid bodies. They are located in regions which underwent remobilization of varying intensity during the Middle and Late Precambrian. The rocks show polymetamorphism, K-feldspar blastesis, tectonic overprinting and isotopic rejuvenation. These granulites are in some cases very similar to those formed during the Middle Precambrian. In some places it is therefore quite difficult to distinguish between Early and Middle Precambrian granulites - the more so, since interpretations of radiometric age values are largely controversial. At present there is no evidence of granulitic rocks related to the Late Precambrian geotectonic cycles of Brazil. © 1979.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main geotectonics models presented during the last 25 yr to explain the evolution of the Late Precambrian (Brasiliano Cycle) terranes of the NE of the State of Sao Paulo and the adjacent areas of the State of Minas Gerais, domain of the Guaxupe Massif, SE Brazil, are presented and discussed. The models can be classified in: 1) classic; 2) mainly ensialic; and 3) applications of the plate tectonic theory. -from English summary

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Borborema Province of NE Brasil comprises the central part of a wide Pan-African-Brasiliano orogenetic belt that formed as a consequence of late Neoproterozoic convergence and collision of the São Luis-West Africa craton and the São Francisco-Congo-Kasai cratons. New Sm Nd and U Pb results from the eastern part of this province help to define the basic internal architecture and pre-collisional history of this province, with particular emphasis on delineating older cratonic terranes, their fragmentation during the Mesoproterozoic, and their assembly into West Gondwana during the Pan African-Brasiliano orogeny at ca. 600 Ma. The region can be divided into three major geotectonic domains: a) Rio Piranhas-Caldas Brandão massif, with overlying Paleoproterozoic to Neoproterozoic supracrustal rocks, north of the Patos Lineament; b) the Archean to Paleoproterozoic São Francisco craton (SFC) to the south; and c) a complex domain of Paleoproterozoic to Archean basement blocks with several intervening Mesoproterozoic to Neoproterozoic fold belts in the center (south of Patos Lineament and north of SFC). The northern and central domains comprise the Borborema Province. Archean basement gneiss and Transamazonian granulite of northern SFC are exposed in the southern part of the central domain, underlying southern parts of the Sergipano fold belt. Basement in the Rio Piranhas massif appears to consist mostly of Transamazonian (2.1 to 2.2 Ga) gneissic rocks; Nd model ages (TDM) of ca. 2.6 Ga for 2.15 Ga gneisses indicate a substantial Archean component in the protoliths to these gneisses. The Caldas Brandão massif to the east yields both Transamazonian and Archean U Pb zircon and Nd (TDM) ages, indicating a complex architecture. Metasedimentary rocks of the Jucurutu Formation yield detrital zircons with original crystallization ages as young as 1.8 Ga, indicating that these rocks may be late Paleoproterozoic and correlate with other ca. 1.8 Ga cratonic supracrustal rocks in Brazil such as the Roraima Group and Espinhaço Group. Most metavolcanic and pre-Brasiliano granitic units of the Sergipano (SDS), Pajeú-Paraíba (SPP), Riacho Pontal (SRP), and Piancó-Alto Brígida (SPAB) fold belts in the central domain formed ~ 1.0 ± 0.1 Ga, based on U Pb ages of zircons. Nd model ages (TDM) for these same rocks, as well as Brasiliano granites intruded into them and large parts of the Pernambuco-Alagoas massif, are commonly 1.3-1.7 Ga, indicating that rocks of the fold belts were not wholly derived from either older (> 2.1 Ga) or juvenile (ca. 1.0 Ga) crust, but include mixtures of both components. A simple interpretation of Brasiliano granite genesis and the Nd data implies that there is no Transamazonian or Archean basement underlying large parts of these fold belts or of the Pernambuco-Alagoas massif. An exception is a belt of syenitic Brasiliano plutons (Syenitoid Line) and host gneisses between SPAB and SPP that clearly has a Transamazonian (or older) source. In addition, there are several smaller blocks of Archean to Transamazonian gneiss that can be defined within and among these fold belts. These blocks do not appear to constitute a continuous basement complex, but appear to be isolated older crustal fragments. Our data support a model in which ca. 1.0 Ga rifting was an important tectonic and crust-forming event along the northern edge of the São Francisco craton. Our data also show that significant parts of the Borborema Province are not remobilized Transamazonian to Archean crust, but that Mesoproterozoic crust is a major feature of the Province. There are several small remnants of older crust within the area dominated by Mesoproterozoic crust, suggesting that the rifting event created several small continental fragments that were later incorporated into the Brasiliano collisional orogen. We cannot at present determine if the Rio Piranhas-Caldas Brandão massifs and the older crustal blocks of the central domain were originally part of the São Francisco craton or whether some (or all) of them came from more exotic parts of the Proterozoic Earth. Finally, our data have not yet revealed any juvenile terranes of either Transamazonian or Brasiliano age. © 1995.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Brazilian Granitic Province from southeastern Mato Grosso do Sul and Mato Grosso region, central western Brazil, can be divided into two major groups and/or magmatic events related to the evolution of the Paraguay Fold Belt. The southern portion crops out in Mato Grosso do Sul State and is constituted by the Taboco, Rio Negro, Coxim and Sonora massifs forming NE-SW oriented, elongated small intrusions. The north portion crops out in Mato Grosso State and is constituted by the São Vicente, Araguaiana and Lajinha batholiths. Lithogeochemical aspects of the northern granites point to Type-I granites ranging from K calc-alkaline to high-K, peraluminous to metaluminous in composition, generated in an environment of continental collision and/or post- collision decompression. The southern granites are Type-I, from K calc-alkaline to high-K, peraluminous to subordinate metalummous, in a syn-collision continental arc environment with the exception of some pre-collisional facies from the Rio Negro Massif. The southern granites have less SiO 2 and K 2O, and are less differentiated and evolved than granites from the northern region. The four southern granites can be grouped into two subordinate sets with the degree of differentiation increasing from South (Taboco and Rio Negro) to North (Coxim and Sonora). The granitic rocks are characterized by a magmatism generated by melting of material from the lower crust which suggests that in this province the formation from non-cogenetic magmas with diversified compositions and distinct degrees of fractioning reaching more steady consolidated environments at the end of the collisional event in the southeastern Amazonian Craton.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sararé Massif occurs in the southwest Mato Grosso state intruded into Mesoproterozoic units of the Jauru Block inside the Amazonian Craton. It presents an extension of approximately 80 km2 and NW-SE tectonic structures control the elongated shape. It is constituted by three major monzogranitic petrographic facies, represented by leucocratic, reddish, isotropic, equi-inequigranular to locally porphyritic rocks. The composition indicates S-type, peraluminous, with indicatives of late- to post-kinematic magmatism. Geochronological studies with 40Ar/39Ar in biotites and muscovites resulted in ages of 903 to 906 Ma was interpreted as massif rocks cooling period and U-PB 917 ± 18 Ma. ages points to the crystallization of the intrusive body. The massif is formed by melting of material of the upper crust, in an environment of continental collision and/or of post-collisional decompression at the ending of the Aguapeí-Sunsás event, in more stable environments of consolidation and tectonic stabilization of the Amazonian Craton.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Inclut la bibliographie

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rio Apa Massif crops out in the Mato Grosso do Sul state and corresponds to the southeastern portion of the Amazonian Craton dominantly Paleoproterozoic in age. Rio Apa Complex is oldest and it is composed mainly by migmatitic orthogneisses, beyond amphybolites, tonalities and granodiorite. Alto Tererê Group is composed by schists, biotitemuscovite gneisses and micaceous quartzites generally rich in garnets, beyond metabasic rocks of low amphibolite facies. The Amoguijá Group is constituted by Alumiador Intrusive Suite, which is represented by a sieno to monzogranitic batholith and Serra da Bocaina Volcanic Suite composed of volcanoclastic rocks of alkali riolites to monzoriolites compositions and pyroclastic products. Overlaying towards East and South occurs Neoproterozoic metasedimentary rocks from the Paraguai Folded Belt (Cuiabá, Corumbá and Jacadigo Groups - Urucum Formation). Structural-metamorphic framewok is identified by five deformational phases but the actual tectonic and metamorphic structure shows the superposed tectonic array of the Paraguai Folded Belt. Rocks from Rio Apa Complex, Alto Tererê Group and Amoguijá Group record an older structural evolution defined by (Dn-1 and Dn). The deformational phases (Dn+1 and Dn+2) are visible mainly in rocks of Paraguai Folded Belt beyond the last deformation (Dn+3) that imprints all sequences.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Rio Apa Massif corresponds to the southeastern portion of the Amazonian Craton and crops out in the Mato Grosso do Sul State, Brazil. It is constituted by rocks of paleoproterozoic age of Rio Apa Complex, Alto Tererê Group and the plutonic-volcanic suites of the Amoguijá Group, subdivided in Alumiador Intrusive suits and Serra da Bocaina Volcanic. The Volcanic Suite is represented by São Francisco and Bocaina mountains and is constituted by terms of the composition of alkali - rhyolitic to rhyolitic, including in minor amounts riodacite, andesite and dacite. It consists of a variety of textual subvolcanic rocks, volcanic and varied volcanoclastics. The pyroclastic deposits are very expressive and consist of pyroclastic particle immerse in aphanitic matrix, fine grained or amorphous, where quartz, feldspar, chlorite, sericite, microlithes of carbonate, sparse spherulites and reliquiar volcanic glass can be distinguished. The pyroclastic rocks are represented by breccias, ignimbrites, agglomerate, tuffs, lapillistones and pumices and contain commonly vitroclasts, lithoclasts and crystalloclasts, pumices, fiammes, glass shards, spherulites, vesicles and amygdales. They are calc-alkaline rocks with dominant peraluminous character high to middle potassium series and define a sin-colisional dominant tectonic and are genetically associated to the evolution of the Amoguijá Magmatic Arc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Capão Bonito Granitic Massif is situated in the south portion of the São Paulo State and represents an elongate body with general direction NE-SW, intrusive in epimetamorphic rocks of Açungui Group (Votuverava Formation), and in granitic rocks of the Três Córregos Complex. It is partially covered by sedimentary rocks of the Paraná Basin (Itararé Group). As the chief type we have red sienogranite, holo to leucocratic with biotite and rare hornblende, inequigranular with medium to coarse grains to porphiritic and isotropic to slightly cataclastic textures of marginal zones. This granite was analyzed for petrographics (composition, structure and texture), chemical composition (major elements), physical and mechanical (water absorption, resistance to abrasion, impact of hard body and efforts of compression and traction) and chemical attack aspects. The results were compared to suggested values for granitic rocks used for ornamental purposes. The whole massif shows compositional, textural, structural (related to isotropy) and chemical (major elements) characteristics very homogeneous. The varieties of sienogranite named commercially as Capão Bonito or Rubi Red Granite showed results very similar to each other, with some variations in the physical and mechanical resistance resulting of the penetrative brittle deformation of regional occurrence, evidenced by differences in the microfissural index.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Rio Apa Massif corresponds the southern portion of the Amazon Craton and is located in the southwest of Mato Grosso do Sul State. It consists on Paleoproterozoic rocks of Rio Apa Complex, Alto Tererê Group and Amonguijá Group, is subdivided into Alumiador Plutonic Suite and Serra da Bocaina Volcanic Suite. The volcanic suite is comprises sub volcanic, volcanic and varied volcanoclastics rocks with composition ranging from alkali-rhyolitic to rhyolite types. The plutonic suite corresponds to an N-S elongated batholith and is characterized by four main segments delimited by NW-SE faults. The southern and central main segments, discussed in this paper, are characterized by the following petrographic facies: medium to fine grained hornblende-biotite monzogranites, coarse grained biotite monzogranites, graphic biotite sienogranites and muscovite sienogranites and the northern segment is contemporaneous and is composed of two different sequences of rocks, one acid and another of basic to ultrabasic composition. The southern and central segment consists of to chemically compatible rocks with the types I and A Granites. These are calc-alkaline rocks of high potassium to the shoshonitic and subalkaline. Constitute sin-collisional granites of metaluminous the peraluminous characters of the Amonguijá Magmatic Arc, but they exhibit late litotypes with chemical characteristics of post tectonic granites from intraplate environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)