694 resultados para MACROBENTHIC COMMUNITIES
Resumo:
The observation of non-random phylogenetic distribution of traits in communities provides evidence for niche-based community assembly. Environment may influence the phylogenetic structure of communities because traits determining how species respond to prevailing conditions can be phylogenetically conserved. In this study, we investigate the variation of butterfly species richness and of phylogenetic - and -diversities along temperature and plant species richness gradients. Our study indicates that butterfly richness is independently positively correlated to temperature and plant species richness in the study area. However, the variation of phylogenetic - and -diversities is only correlated to temperature. The significant phylogenetic clustering at high elevation suggests that cold temperature filters butterfly lineages, leading to communities mostly composed of closely related species adapted to those climatic conditions. These results suggest that in colder and more severe conditions at high elevations deterministic processes and not purely stochastic events drive the assemblage of butterfly communities.
Resumo:
Understanding the distribution and composition of species assemblages and being able to predict them in space and time are highly important tasks io investigate the fate of biodiversity in the current global changes context. Species distribution models are tools that have proven useful to predict the potential distribution of species by relating their occurrences to environmental variables. Species assemblages can then be predicted by combining the prediction of individual species models. In the first part of my thesis, I tested the importance of new environmental predictors to improve species distribution prediction. I showed that edaphic variables, above all soil pH and nitrogen content could be important in species distribution models. In a second chapter, I tested the influence of different resolution of predictors on the predictive ability of species distribution models. I showed that fine resolution predictors could ameliorate the models for some species by giving a better estimation of the micro-topographic condition that species tolerate, but that fine resolution predictors for climatic factors still need to be ameliorated. The second goal of my thesis was to test the ability of empirical models to predict species assemblages' characteristics such as species richness or functional attributes. I showed that species richness could be modelled efficiently and that the resulting prediction gave a more realistic estimate of the number of species than when obtaining it by stacking outputs of single species distribution models. Regarding the prediction of functional characteristics (plant height, leaf surface, seed mass) of plant assemblages, mean and extreme values of functional traits were better predictable than indices reflecting the diversity of traits in the community. This approach proved interesting to understand which environmental conditions influence particular aspects of the vegetation functioning. It could also be useful to predict climate change impacts on the vegetation. In the last part of my thesis, I studied the capacity of stacked species distribution models to predict the plant assemblages. I showed that this method tended to over-predict the number of species and that the composition of the community was not predicted exactly either. Finally, I combined the results of macro- ecological models obtained in the preceding chapters with stacked species distribution models and showed that this approach reduced significantly the number of species predicted and that the prediction of the composition is also ameliorated in some cases. These results showed that this method is promising. It needs now to be tested on further data sets. - Comprendre la manière dont les plantes se répartissent dans l'environnement et s'organisent en communauté est une question primordiale dans le contexte actuel de changements globaux. Cette connaissance peut nous aider à sauvegarder la diversité des espèces et les écosystèmes. Des méthodes statistiques nous permettent de prédire la distribution des espèces de plantes dans l'espace géographique et dans le temps. Ces modèles de distribution d'espèces, relient les occurrences d'une espèce avec des variables environnementales pour décrire sa distribution potentielle. Cette méthode a fait ses preuves pour ce qui est de la prédiction d'espèces individuelles. Plus récemment plusieurs tentatives de cumul de modèles d'espèces individuelles ont été réalisées afin de prédire la composition des communautés végétales. Le premier objectif de mon travail est d'améliorer les modèles de distribution en testant l'importance de nouvelles variables prédictives. Parmi différentes variables édaphiques, le pH et la teneur en azote du sol se sont avérés des facteurs non négligeables pour prédire la distribution des plantes. Je démontre aussi dans un second chapitre que les prédicteurs environnementaux à fine résolution permettent de refléter les conditions micro-topographiques subies par les plantes mais qu'ils doivent encore être améliorés avant de pouvoir être employés de manière efficace dans les modèles. Le deuxième objectif de ce travail consistait à étudier le développement de modèles prédictifs pour des attributs des communautés végétales tels que, par exemple, la richesse en espèces rencontrée à chaque point. Je démontre qu'il est possible de prédire par ce biais des valeurs de richesse spécifiques plus réalistes qu'en sommant les prédictions obtenues précédemment pour des espèces individuelles. J'ai également prédit dans l'espace et dans le temps des caractéristiques de la végétation telles que sa hauteur moyenne, minimale et maximale. Cette approche peut être utile pour comprendre quels facteurs environnementaux promeuvent différents types de végétation ainsi que pour évaluer les changements à attendre au niveau de la végétation dans le futur sous différents régimes de changements climatiques. Dans une troisième partie de ma thèse, j'ai exploré la possibilité de prédire les assemblages de plantes premièrement en cumulant les prédictions obtenues à partir de modèles individuels pour chaque espèce. Cette méthode a le défaut de prédire trop d'espèces par rapport à ce qui est observé en réalité. J'ai finalement employé le modèle de richesse en espèce développé précédemment pour contraindre les résultats du modèle d'assemblage de plantes. Cela a permis l'amélioration des modèles en réduisant la sur-prédiction et en améliorant la prédiction de la composition en espèces. Cette méthode semble prometteuse mais de nouveaux tests sont nécessaires pour bien évaluer ses capacités.
Resumo:
The isolation of bioactive compounds from medicinal plants, based on traditional use or ethnomedical data, is a highly promising potential approach for identifying new and effective antimalarial drug candidates. The purpose of this review was to create a compilation of the phytochemical studies on medicinal plants used to treat malaria in traditional medicine from the Community of Portuguese-Speaking Countries (CPSC): Angola, Brazil, Cape Verde, Guinea-Bissau, Mozambique and São Tomé and Príncipe. In addition, this review aimed to show that there are several medicinal plants popularly used in these countries for which few scientific studies are available. The primary approach compared the antimalarial activity of native species used in each country with its extracts, fractions and isolated substances. In this context, data shown here could be a tool to help researchers from these regions establish a scientific and technical network on the subject for the CPSC where malaria is a public health problem.
Resumo:
The association between land use and land cover changes between 1979-2004 in a 2.26-million-hectare area south of the Gran Chaco region and Trypanosoma cruzi infection in rural communities was analysed. The extent of cultural land, open and closed forests and shrubland up to 3,000 m around rural communities in the north, northwest and west of the province of Córdoba was estimated using Landsat satellite imagery. The T. cruzi prevalence was estimated with a cross-sectional serological survey conducted in the rural communities. The land cover showed the same patterns in the 1979, 1999 and 2004 satellite imagery in both the northwest and west regions, with shrinking regions of cultured land and expanding closed forests away from the community. The closed forests and agricultural land coverage in the north region showed the same trend as in the northwest and west regions in 1979 but not in 1999 or 2004. In the latter two years, the coverage remote from the communities was either constant or changed in opposite ways from that of the northwest and west regions. The changes in closed forests and cultured vegetation alone did not have a significant, direct relationship with the occurrence of rural communities with at least one person infected by T. cruzi. This study suggests that the overall decrease in the prevalence of T. cruzi is a consequence of a combined effect of vector control activities and changes in land use and land cover.
Resumo:
In 2000 the European Statistical Office published the guidelines for developing theHarmonized European Time Use Surveys system. Under such a unified framework,the first Time Use Survey of national scope was conducted in Spain during 2002–03. The aim of these surveys is to understand human behavior and the lifestyle ofpeople. Time allocation data are of compositional nature in origin, that is, they aresubject to non-negativity and constant-sum constraints. Thus, standard multivariatetechniques cannot be directly applied to analyze them. The goal of this work is toidentify homogeneous Spanish Autonomous Communities with regard to the typicalactivity pattern of their respective populations. To this end, fuzzy clustering approachis followed. Rather than the hard partitioning of classical clustering, where objects areallocated to only a single group, fuzzy method identify overlapping groups of objectsby allowing them to belong to more than one group. Concretely, the probabilistic fuzzyc-means algorithm is conveniently adapted to deal with the Spanish Time Use Surveymicrodata. As a result, a map distinguishing Autonomous Communities with similaractivity pattern is drawn.Key words: Time use data, Fuzzy clustering; FCM; simplex space; Aitchison distance
Resumo:
A key issue in the implementation of the Water Framework Directive is the classification of streams and rivers using biological quality parameters and type-specific reference conditions. Four groups of stream types were defined in NE Spain on the basis of 152 diatom samples by means of detrended correspondence analysis and classification techniques. Diatom analysis was restricted to epilithic taxa, and the sites included gradients ranging from near-natural streams to sites with poor ecological quality. The main gradient shows a clear separation of sites in relation to the degree of human influence: polluted streams (mainly located in the lowlands) differ from streams in mountainous areas and in the Pyrenees. A second gradient is related to physiographical features. Headwater streams can be distinguished by their catchment geology. The type-specific diatom taxa for the stream types studied were determined by using indicator species analysis (IndVal). The type-specific taxa from near-natural streams are coincident with the indicator taxa for high ecological status. Human impact reduced the typological heterogeneity of the diatom community composition. Overall, the diatom communities in NE Spain exhibit a regional distribution pattern that closely corresponds with that observed in river systems elsewhere. Physiographical differences are only evident in undisturbed sites, while nutrient enrichment and other human disturbances may mask the regional differences in the distribution of diatom communities
Resumo:
The importance of competition between similar species in driving community assembly is much debated. Recently, phylogenetic patterns in species composition have been investigated to help resolve this question: phylogenetic clustering is taken to imply environmental filtering, and phylogenetic overdispersion to indicate limiting similarity between species. We used experimental plant communities with random species compositions and initially even abundance distributions to examine the development of phylogenetic pattern in species abundance distributions. Where composition was held constant by weeding, abundance distributions became overdispersed through time, but only in communities that contained distantly related clades, some with several species (i.e., a mix of closely and distantly related species). Phylogenetic pattern in composition therefore constrained the development of overdispersed abundance distributions, and this might indicate limiting similarity between close relatives and facilitation/complementarity between distant relatives. Comparing the phylogenetic patterns in these communities with those expected from the monoculture abundances of the constituent species revealed that interspecific competition caused the phylogenetic patterns. Opening experimental communities to colonization by all species in the species pool led to convergence in phylogenetic diversity. At convergence, communities were composed of several distantly related but species-rich clades and had overdispersed abundance distributions. This suggests that limiting similarity processes determine which species dominate a community but not which species occur in a community. Crucially, as our study was carried out in experimental communities, we could rule out local evolutionary or dispersal explanations for the patterns and identify ecological processes as the driving force, underlining the advantages of studying these processes in experimental communities. Our results show that phylogenetic relations between species provide a good guide to understanding community structure and add a new perspective to the evidence that niche complementarity is critical in driving community assembly.
Resumo:
Many terrestrial and marine systems are experiencing accelerating decline due to the effects of global change. This situation has raised concern about the consequences of biodiversity losses for ecosystem function, ecosystem service provision, and human well-being. Coastal marine habitats are a main focus of attention because they harbour a high biological diversity, are among the most productive systems of the world and present high anthropogenic interaction levels. The accelerating degradation of many terrestrial and marine systems highlights the urgent need to evaluate the consequence of biodiversity loss. Because marine biodiversity is a dynamic entity and this study was interested global change impacts, this study focused on benthic biodiversity trends over large spatial and long temporal scales. The main aim of this project was to investigate the current extent of biodiversity of the high diverse benthic coralligenous community in the Mediterranean Sea, detect its changes, and predict its future changes over broad spatial and long temporal scales. These marine communities are characterized by structural species with low growth rates and long life spans; therefore they are considered particularly sensitive to disturbances. For this purpose, this project analyzed permanent photographic plots over time at four locations in the NW Mediterranean Sea. The spatial scale of this study provided information on the level of species similarity between these locations, thus offering a solid background on the amount of large scale variability in coralligenous communities; whereas the temporal scale was fundamental to determine the natural variability in order to discriminate between changes observed due to natural factors and those related to the impact of disturbances (e.g. mass mortality events related to positive thermal temperatures, extreme catastrophic events). This study directly addressed the challenging task of analyzing quantitative biodiversity data of these high diverse marine benthic communities. Overall, the scientific knowledge gained with this research project will improve our understanding in the function of marine ecosystems and their trajectories related to global change.
Resumo:
The soy expansion model in Argentina generates structural changes in traditional lifestyles that can be associated with different biophysical and socioeconomic impacts. To explore this issue, we apply an innovative method for integrated assessment - the Multi Scale Integrated Analysis of Societal and Ecosystem Metabolism (MuSIASEM) framework - to characterize two communities in the Chaco Region, Province of Formosa, North of Argentina. These communities have recently experienced the expansion of soy production, altering their economic activity, energy consumption patterns, land use, and human time allocation. The integrated characterization presented in the paper illustrates the differences (biophysical, socioeconomic, and historical) between the two communities that can be associated with different responses. The analysis of the factors behind these differences has important policy implications for the sustainable development of local communities in the area.
Resumo:
1. As trees in a given cohort progress through ontogeny, many individuals die. This risk of mortality is unevenly distributed across species because of many processes such as habitat filtering, interspecific competition and negative density dependence. Here, we predict and test the patterns that such ecological processes should inscribe on both species and phylogenetic diversity as plants recruit from saplings to the canopy. 2. We compared species and phylogenetic diversity of sapling and tree communities at two sites in French Guiana. We surveyed 2084 adult trees in four 1-ha tree plots and 943 saplings in sixteen 16-m2 subplots nested within the tree plots. Species diversity was measured using Fisher's alpha (species richness) and Simpson's index (species evenness). Phylogenetic diversity was measured using Faith's phylogenetic diversity (phylogenetic richness) and Rao's quadratic entropy index (phylogenetic evenness). The phylogenetic diversity indices were inferred using four phylogenetic hypotheses: two based on rbcLa plastid DNA sequences obtained from the inventoried individuals with different branch lengths, a global phylogeny available from the Angiosperm Phylogeny Group, and a combination of both. 3. Taxonomic identification of the saplings was performed by combining morphological and DNA barcoding techniques using three plant DNA barcodes (psbA-trnH, rpoC1 and rbcLa). DNA barcoding enabled us to increase species assignment and to assign unidentified saplings to molecular operational taxonomic units. 4. Species richness was similar between saplings and trees, but in about half of our comparisons, species evenness was higher in trees than in saplings. This suggests that negative density dependence plays an important role during the sapling-to-tree transition. 5. Phylogenetic richness increased between saplings and trees in about half of the comparisons. Phylogenetic evenness increased significantly between saplings and trees in a few cases (4 out of 16) and only with the most resolved phylogeny. These results suggest that negative density dependence operates largely independently of the phylogenetic structure of communities. 6. Synthesis. By contrasting species richness and evenness across size classes, we suggest that negative density dependence drives shifts in composition during the sapling-to-tree transition. In addition, we found little evidence for a change in phylogenetic diversity across age classes, suggesting that the observed patterns are not phylogenetically constrained.
Resumo:
This FY2007 budget will continue progress toward growing Iowa’s economy, improving student achievement and expanding health care security. With your cooperation last year we enacted the Strong Start program, the Watershed Improvement Review Board, the Iowa Values Fund, Iowa Cares, the Meth Control Act, a balanced budget and other initiatives which made for a very productive session. In a spirit of cooperation we deliver the FY2007 budget at the start of the session to allow more time for your consideration.
Resumo:
Cape Verde is a tropical oceanic ecosystem, highly fragmented and dispersed, with islands physically isolated by distance and depth. To understand how isolation affects the ecological variability in this archipelago, we conducted a research project on the community structure of the 18 commercially most important demersal fishes. An index of ecological distance based on species relative dominance (Di) is developed from Catch Per Unit Effort, derived from an extensive database of artisanal fisheries. Two ecological measures of distance between islands are calculated: at the species level, DDi, and at the community level, DD (sum of DDi). A physical isolation factor (Idb) combining distance (d) and bathymetry (b) is proposed. Covariance analysis shows that isolation factor is positively correlated with both DDi and DD, suggesting that Idb can be considered as an ecological isolation factor. The effect of Idb varies with season and species. This effect is stronger in summer (May to November), than in winter (December to April), which appears to be more unstable. Species react differently to Idb, independently of season. A principal component analysis on the monthly (DDi) for the 12 islands and the 18 species, complemented by an agglomerative hierarchical clustering, shows a geographic pattern of island organization, according to Idb. Results indicate that the ecological structure of demersal fish communities of Cape Verde archipelago, both in time and space, can be explained by a geographic isolation factor. The analytical approach used here is promising and could be tested in other archipelago systems.
Resumo:
The Convention on Biological Diversity (CBD) aims at the conservation of all three levels of biodiversity, that is, ecosystems, species and genes. Genetic diversity represents evolutionary potential and is important for ecosystem functioning. Unfortunately, genetic diversity in natural populations is hardly considered in conservation strategies because it is difficult to measure and has been hypothesised to co-vary with species richness. This means that species richness is taken as a surrogate of genetic diversity in conservation planning, though their relationship has not been properly evaluated. We tested whether the genetic and species levels of biodiversity co-vary, using a large-scale and multi-species approach. We chose the high-mountain flora of the Alps and the Carpathians as study systems and demonstrate that species richness and genetic diversity are not correlated. Species richness thus cannot act as a surrogate for genetic diversity. Our results have important consequences for implementing the CBD when designing conservation strategies.
Resumo:
Are differences in local banking development long-lasting? Do they affect long-term economic performance?I answer these questions by relying on an historical development that occurred in Italian cities during the 15thcentury. A sudden change in the Catholic doctrine had driven the Jews toward money lending. Cities thatwere hosting Jewish communities developed complex banking institutions for two reasons: first, the Jews werethe only people in Italy who were allowed to lend for a profit and, second, the Franciscan reaction to Jewishusury led to the creation of charity lending institutions, the Monti di Pietà, that have survived until today andhave become the basis of the Italian banking system. Using Jewish demography in 1500 as an instrument, Iprovide evidence of (1) an extraordinary persistence in the level of banking development across Italian cities (2)large effects of current local banking development on per-capita income. Additional firm-level analyses suggestthat well-functioning local banks exert large effects on aggregate productivity by reallocating resources towardmore efficient firms. I exploit the expulsion of the Jews from the Spanish territories in Italy in 1541 to arguethat my results are not driven by omitted institutional, cultural and geographical characteristics. In particular,I show that, in Central Italy, the difference in current income between cities that hosted Jewish communitiesand cities that did not exists only in those regions that were not Spanish territories in the 16th century.