275 resultados para M31


Relevância:

10.00% 10.00%

Publicador:

Resumo:

During the international "Overflow-Expedition'' 1973 on R.V. "Meteor" oxygen concentrations in surface layers were measured in order to determine the oxygen gradients within the first two meters and to add some informations to the mechanisms of oxygen exchange at the air-sea interface. These investigations may be interesting also with regard to longterm- observations of the oxygen distribution in the Atlantic, especially the problem of the A.O.U. (apparent oxygen utilization) determination. To measure oxygen gradients a special sampler was built which is able to take water samples each 20 cm of the first 2 meters. These data were supplemented by further samples down to 150 m, taken by conventional water samplers, from which samples were also taken to measure N2/O2-relations. By comparing these relations with theoretical relations in air-saturated water the influence of biological production and consumption on the oxygen contents in water could be estimated. A simple glass apparatus was built to extract gas from the water samples, and hereafter the N2/O2-relations were determined by mass spectrometry. Most distributions of the oxygen anomaly show a negative oxygen balance which varies largely, probably due to strong mixing processes in the Iceland-Faroe ridge area. The distribution of surface oxygen saturation values are of two different types. The values of the stations 260, 262 and 270 stem from mixed water and show homogeneous supersaturations, as can be found instantly when whitecaps appear. The values of 9 other stations are from water, sampled during calm periods which has been mixed and supersaturated before. They show a decreasing oxygen saturation towards the sea surface and often undersaturation in the upper decimeters up to 98 % and even 91 %. So at the air-sea interface even less initial oxygen saturation than 100 % can be found after supersaturation during heavy weather periods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As part of the large-scale, interdisciplinary deep-sea study "BIGSET", the relationship between the monsoon-induced regional and temporal variability of POC deposition and the small-sized benthic community was investigated at several sites 2316-4420 m deep in the Arabian Sea during four cruises between 1995 and 1998. Vertical and horizontal distribution patterns of chloroplastic pigments (a measure of phytodetritus deposition), readily soluble protein and activity, and biomass parameters of the small-sized benthic community (Electron Transport System Activity (ETSA); bacterial ectoenzymatic activity (FDA turnover) and DNA concentrations) were measured concurrently with the vertical fluxes of POC and chloroplastic pigments. Sediment chlorophyll a (chl. a) profiles were used to calculate chl. a flux rates and to estimate POC flux across the sediment water interface using two different transport reaction models. These estimates were compared with corresponding flux rates determined in sediment traps. Regional variability of primary productivity and POC deposition at the deep-sea floor creates a trophic gradient in the Arabian Basin from the NW to the SE, which is primarily related to the activity of monsoon winds and processes associated with the topography of the Arabian Basin and the vicinity of land masses. Inventories of sediment chloroplastic pigments closely corresponded to this trophic gradient. For ETSA, FDA and DNA, however, no clear coupling was found, although stations WAST (western Arabian Sea) and NAST (northern Arabian Sea) were characterised by high concentrations and activities. These parameters exhibited high spatial and temporal variability, making it impossible to recognise clear mechanisms controlling temporal and spatial community patterns of the small-sized benthic biota. Nevertheless, the entire Arabian Basin was recognised as being affected by monsoonal activity. Comparison of two different transport reaction models indicates that labile chl. a buried in deeper sediment layers may escape rapid degradation in Arabian deep-sea sediments.

Relevância:

10.00% 10.00%

Publicador: