963 resultados para Loss Determination in Microsphere Resonators
Resumo:
We present a purely physical model to determine cosmogenic production rates for noble gases and radionuclides in micrometeorites (MMs) and interplanetary dust particles (IDPs) by solar cosmic-rays (SCR) and galactic cosmic-rays (GCR) fully considering recoil loss effects. Our model is based on various nuclear model codes to calculate recoil cross sections, recoil ranges, and finally the percentages of the cosmogenic nuclides that are lost as a function of grain size, chemical composition of the grain, and the spectral distribution of the projectiles. The main advantage of our new model compared with earlier approaches is that we consider the entire SCR particle spectrum up to 240 MeV and not only single energy points. Recoil losses for GCR-produced nuclides are assumed to be equal to recoil losses for SCR-produced nuclides. Combining the model predictions with Poynting-Robertson orbital lifetimes, we calculate cosmic-ray exposure ages for recently studied MMs, cosmic spherules, and IDPs. The ages for MMs and the cosmic-spherule are in the range <2.2–233 Ma, which corresponds, according to the Poynting-Robertson drag, to orbital distances in the range 4.0–34 AU. For two IDPs, we determine exposure ages of longer than 900 Ma, which corresponds to orbital distances larger than 150 AU. The orbital distance in the range 4–6 AU for one MM and the cosmic spherule indicate an origin either in the asteroid belt or release from comets coming either from the Kuiper Belt or the Oort Cloud. Three of the studied MMs have orbital distances in the range 23–34 AU, clearly indicating a cometary origin, either from short-period comets from the Kuiper Belt or from the Oort Cloud. The two IDPs have orbital distances of more than 150 AU, indicating an origin from Oort Cloud comets.
Resumo:
The luminosity calibration for the ATLAS detector at the LHC during pp collisions at root s = 7 TeV in 2010 and 2011 is presented. Evaluation of the luminosity scale is performed using several luminosity-sensitive detectors, and comparisons are made of the long-term stability and accuracy of this calibration applied to the pp collisions at root s = 7 TeV. A luminosity uncertainty of delta L/L = +/- 3.5 % is obtained for the 47 pb(-1) of data delivered to ATLAS in 2010, and an uncertainty of delta L/L = +/- 1.8 % is obtained for the 5.5 fb(-1) delivered in 2011.
Resumo:
Li-Fraumeni syndrome (LFS) is characterized by a variety of neoplasms occurring at a young age with an apparent autosomal dominant transmission. Individuals in pedigrees with LFS have high incidence of second malignancies. Recently LFS has been found to be associated with germline mutations of a tumor-suppressor gene, p53. Because LFS is rare and indeed not a clear-cut disease, it is not known whether all cases of LFS are attributable to p53 germline mutations and how p53 plays in cancer occurrence in such cancer syndrome families. In the present study, DNAs from constitutive cells of two-hundred and thirty-three family members from ten extended pedigrees were screened for p53 mutations. Six out of the ten LFS families had germline mutations at the p53 locus, including point and deletion mutations. In these six families, 55 out of 146 members were carriers of p53 mutations. Except one, all mutations occurred in exons 5 to 8 (i.e., the "hot spot" region) of the p53 gene. The age-specific penetrance of cancer was estimated after the genotype for each family member at risk was determined. The penetrance was 0.15, 0.29, 0.35, 0.77, and 0.91 by 20, 30, 40, 50 and 60 year-old, respectively, in male carriers; 0.19, 0.44, 0.76, and 0.90 by 20, 30, 40, and 50 year-old, respectively, in female carriers. These results indicated that one cannot escape from tumorigenesis if one inherits a p53 mutant allele; at least ninety percent of p53 carriers will develop cancer by the age of 60. To evaluate the possible bias due to the unexamined blood-relatives in LFS families, I performed a simulation analysis in which a p53 genotype was assigned to each unexamined person based on his cancer status and liability to cancer. The results showed that the penetrance estimates were not biased by the unexamined relatives. I also determined the sex, site, and age-specific penetrance of breast cancer in female carriers and lung cancer in male carriers. The penetrance of breast cancer in female carriers was 0.81 by age 45; the penetrance of lung cancer in male carriers was 0.78 by age 60, indicating that p53 play a key role for tumorigenesis in common cancers. ^
Resumo:
In some gonochoristic species, sex is influenced not only by genotype at conception but also by the environment that offspring experience during early ontogeny (termed environmental sex determination or ESD). ESD is thought to be adaptive when seasonal variations in environmental conditions provide a sex-specific fitness advantage. In vertebrates, temperature is the most common determinant of sex, and seasonal variation in temperature serves as a temporal cue of environmental quality such as length of the growing season. Some environments, however, lack strong seasonal temperature fluctuations and other cues, particularly photoperiod, may provide a more reliable indicator of the environment offspring enter. We tested this hypothesis by rearing the offspring of the California grunion (Leuresthes tenuis, Ayres), which experiences low seasonal temperature variation in nature, under common garden conditions at three temperature and two photoperiod treatments. Our experiments revealed that both temperature and photoperiod significantly affected sex ratios in L. tenuis. More females were produced at cooler temperatures and longer day lengths, which is consistent with female biased sex ratios early in the breeding season, and likely adaptive through increased female size and fecundity. To our knowledge, this is the first documented case of photoperiod-dependent sex determination in a gonochoristic vertebrate.
Resumo:
Although there are numerous accurate measuring methods to determine soil moisture content in a spot, until very recently there were no precise in situ and in real time methods that were able to measure soil moisture content along a line. By means of the Distributed Fiber Optic Temperature Measurement method or DFOT, the temperature in 0.12 m intervals and long distances (up to 10,000 m) with a high time frequency and an accuracy of +0.2º C is determined. The principle of temperature measurement along a fiber optic cable is based on the thermal sensitivity of the relative intensities of backscattered photons that arise from collisions with electrons in the core of the glass fiber. A laser pulse, generated by the DTS unit, traversing a fiber optic cable will result in backscatter at two frequencies. The DTS quantifies the intensity of these backscattered photons and elapsed time between the pulse and the observed returned light. The intensity of one of the frequencies is strongly dependent on the temperature at the point where the scattering process occurred. The computed temperature is attributed to the position along the cable from which the light was reflected, computed from the time of travel for the light.
Resumo:
KCNQ4 mutations underlie DFNA2, a subtype of autosomal dominant hearing loss. We had previously identified the pore-region p.G296S mutation that impaired channel activity in two manners: it greatly reduced surface expression and abolished channel function. Moreover, G296S mutant exerted a strong dominant-negative effect on potassium currents by reducing the channel expression at the cell surface representing the first study to identify a trafficking-dependent dominant mechanism for the loss of KCNQ4 channel function in DFNA2. Here, we have investigated the pathogenic mechanism associated with all the described KCNQ4 mutations (F182L, W242X, E260K, D262V, L274H, W276S, L281S, G285C, G285S and G321S) that are located in different domains of the channel protein. F182L mutant showed a wild type-like cell-surface distribution in transiently transfected NIH3T3 fibroblasts and the recorded currents in Xenopus oocytes resembled those of the wild-type. The remaining KCNQ4 mutants abolished potassium currents, but displayed distinct levels of defective cell-surface expression in NIH3T3 as quantified by flow citometry. Co-localization studies revealed these mutants were retained in the ER, unless W242X, which showed a clear co-localization with Golgi apparatus. Interestingly, this mutation results in a truncated KCNQ4 protein at the S5 transmembrane domain, before the pore region, that escapes the protein quality control in the ER but does not reach the cell surface at normal levels. Currently we are investigating the trafficking behaviour and electrophysiological properties of several KCNQ4 truncated proteins artificially generated in order to identify specific motifs involved in channel retention/exportation. Altogether, our results indicate that a defect in KCNQ4 trafficking is the common mechanism underlying DFNA2
Resumo:
Considering a scalable video quality monitoring architecture to detect transmission errors at households, we propose a technique to detect packet losses in IPTV and Side-by-Side 3DTV and evaluate their impact on the perceived quality.