655 resultados para Logs steaming


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Organisations are constantly seeking efficiency gains for their business processes in terms of time and cost. Management accounting enables detailed cost reporting of business operations for decision making purposes, although significant effort is required to gather accurate operational data. Process mining, on the other hand, may provide valuable insight into processes through analysis of events recorded in logs by IT systems, but its primary focus is not on cost implications. In this paper, a framework is proposed which aims to exploit the strengths of both fields in order to better support management decisions on cost control. This is achieved by automatically merging cost data with historical data from event logs for the purposes of monitoring, predicting, and reporting process-related costs. The on-demand generation of accurate, relevant and timely cost reports, in a style akin to reports in the area of management accounting, will also be illustrated. This is achieved through extending the open-source process mining framework ProM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of exercise training is to initiate desirable physiological adaptations that ultimately enhance physical work capacity. Optimal training prescription requires an individualized approach, with an appropriate balance of training stimulus and recovery and optimal periodization. Recovery from exercise involves integrated physiological responses. The cardiovascular system plays a fundamental role in facilitating many of these responses, including thermoregulation and delivery/removal of nutrients and waste products. As a marker of cardiovascular recovery, cardiac parasympathetic reactivation following a training session is highly individualized. It appears to parallel the acute/intermediate recovery of the thermoregulatory and vascular systems, as described by the supercompensation theory. The physiological mechanisms underlying cardiac parasympathetic reactivation are not completely understood. However, changes in cardiac autonomic activity may provide a proxy measure of the changes in autonomic input into organs and (by default) the blood flow requirements to restore homeostasis. Metaboreflex stimulation (e.g. muscle and blood acidosis) is likely a key determinant of parasympathetic reactivation in the short term (0–90 min post-exercise), whereas baroreflex stimulation (e.g. exercise-induced changes in plasma volume) probably mediates parasympathetic reactivation in the intermediate term (1–48 h post-exercise). Cardiac parasympathetic reactivation does not appear to coincide with the recovery of all physiological systems (e.g. energy stores or the neuromuscular system). However, this may reflect the limited data currently available on parasympathetic reactivation following strength/resistance-based exercise of variable intensity. In this review, we quantitatively analyse post-exercise cardiac parasympathetic reactivation in athletes and healthy individuals following aerobic exercise, with respect to exercise intensity and duration, and fitness/training status. Our results demonstrate that the time required for complete cardiac autonomic recovery after a single aerobic-based training session is up to 24 h following low-intensity exercise, 24–48 h following threshold-intensity exercise and at least 48 h following high-intensity exercise. Based on limited data, exercise duration is unlikely to be the greatest determinant of cardiac parasympathetic reactivation. Cardiac autonomic recovery occurs more rapidly in individuals with greater aerobic fitness. Our data lend support to the concept that in conjunction with daily training logs, data on cardiac parasympathetic activity are useful for individualizing training programmes. In the final sections of this review, we provide recommendations for structuring training microcycles with reference to cardiac parasympathetic recovery kinetics. Ultimately, coaches should structure training programmes tailored to the unique recovery kinetics of each individual.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study investigates the cyclic changes in innate immunity in the female reproductive tract (FRT) of mice during the estrous cycle. By examining uterine and vaginal tissues and secretions we show that innate immunity varies with the stage of the estrous cycle and site in the FRT. Secretions from the uterine lumen contained cytokines and chemokines that were significantly higher at proestrus and estrus relative to that measured at diestrus. In contrast, analysis of vaginal secretions indicated that only IL-1β and CXCL1/mouse KC changed during the cycle, with highest levels measured at diestrus and estrus. In contrast, vaginal α-defensin 2 and β-defensins 1-4 mRNA levels peaked at proestrus and estrus and are expressed 1-4 logs greater than that seen in the uterus. These studies further indicate that TLR5 and TLR12 in the uterus, and TLR1, TLR2, TLR5 and TLR13 in the vagina varies with stage of the estrous cycle, with some peaking at proestrus/estrus and others at diestrus. Overall, these studies indicate that innate immune parameters in the uterus and vagina are separate and discrete, and regulated precisely during the estrous cycle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Emotions are inherently social, and are central to learning, online interaction and literacy practices (Shen, Wang, & Shen, 2009). Demonstrating the dynamic sociality of literacy practice, we used e-motion diaries or web logs to explore the emotional states of pre-service high school teachers’ experiences of online learning activities. This is because the methods of communication used by university educators in online learning and writing environments play an important role in fulfilling students’ need for social interaction and inclusion (McInnerney & Roberts, 2004). Feelings of isolation and frustration are common emotions experienced by students in many online learning environments, and are associated with the success or failure of online interactions and learning (Su, et al., 2005). The purpose of the study was to answer the research question: What are the trajectories of pre-service teachers’ emotional states during online learning experiences? This is important because emotions are central to learning, and the current trend toward Massive Open Online Courses (MOOCs) needs research about students’ emotional connections in online learning environments (Kop, 2011). The project was conducted with a graduate class of 64 high school science pre-service teachers in Science Education Curriculum Studies in a large Australian university, including males and females from a variety of cultural backgrounds, aged 22-55 years. Online activities involved the students watching a series of streamed live lectures for the first 5 weeks providing a varied set of learning experiences, such as viewing science demonstrations (e.g., modeling the use of discrepant events). Each week, students provided feedback on learning by writing and posting an e-motion diary or web log about their emotional response. Students answered the question: What emotions did you experience during this learning experience? The descriptive data set included 284 online posts, with students contributing multiple entries. Linguistic appraisal theory, following Martin and White (2005), was used to regroup the 22 different discrete emotions reported by students into the six main affect groups – three positive and three negative: unhappiness/happiness, insecurity/security, and dissatisfaction/satisfaction. The findings demonstrated that the pre-service teachers’ emotional responses to the streamed lectures tended towards happiness, security, and satisfaction within the typology of affect groups – un/happiness, in/security, and dis/satisfaction. Fewer students reported that the streamed lectures triggered negative feelings of frustration, powerlessness, and inadequacy, and when this occurred, it often pertained to expectations of themselves in the forthcoming field experience in classrooms. Exceptions to this pattern of responses occurred in relation to the fifth streamed lecture presented in a non-interactive slideshow format that compressed a large amount of content. Many students responded to the content of the lecture rather than providing their emotional responses to this lecture, and one student felt “completely disengaged”. The social practice of online writing as blogs enabled the students to articulate their emotions. The findings primarily contribute new understanding about students' wide range of differing emotional states, both positive and negative, experienced in response to streamed live lectures and other learning activities in higher education external coursework. The is important because the majority of previous studies have focused on particular negative emotions, such as anxiety in test taking. The research also highlights the potentials of appraisal theory for studying human emotions in online learning and writing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Software development settings provide a great opportunity for CSCW researchers to study collaborative work. In this paper, we explore a specific work practice called bug reproduction that is a part of the software bug-fixing process. Bug re-production is a highly collaborative process by which software developers attempt to locally replicate the ‘environment’ within which a bug was originally encountered. Customers, who encounter bugs in their everyday use of systems, play an important role in bug reproduction as they provide useful information to developers, in the form of steps for reproduction, software screenshots, trace logs, and other ways to describe a problem. Bug reproduction, however, poses major hurdles in software maintenance as it is often challenging to replicate the contextual aspects that are at play at the customers’ end. To study the bug reproduction process from a human-centered perspective, we carried out an ethnographic study at a multinational engineering company. Using semi-structured interviews, a questionnaire and half-a-day observation of sixteen software developers working on different software maintenance projects, we studied bug reproduction. In this pa-per, we present a holistic view of bug reproduction practices from a real-world set-ting and discuss implications for designing tools to address the challenges developers face during bug reproduction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Automated process discovery techniques aim at extracting process models from information system logs. Existing techniques in this space are effective when applied to relatively small or regular logs, but generate spaghetti-like and sometimes inaccurate models when confronted to logs with high variability. In previous work, trace clustering has been applied in an attempt to reduce the size and complexity of automatically discovered process models. The idea is to split the log into clusters and to discover one model per cluster. This leads to a collection of process models – each one representing a variant of the business process – as opposed to an all-encompassing model. Still, models produced in this way may exhibit unacceptably high complexity and low fitness. In this setting, this paper presents a two-way divide-and-conquer process discovery technique, wherein the discovered process models are split on the one hand by variants and on the other hand hierarchically using subprocess extraction. Splitting is performed in a controlled manner in order to achieve user-defined complexity or fitness thresholds. Experiments on real-life logs show that the technique produces collections of models substantially smaller than those extracted by applying existing trace clustering techniques, while allowing the user to control the fitness of the resulting models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Process compliance measurement is getting increasing attention in companies due to stricter legal requirements and market pressure for operational excellence. On the other hand, the metrics to quantify process compliance have only been defined recently. A major criticism points to the fact that existing measures appear to be unintuitive. In this paper, we trace back this problem to a more foundational question: which notion of behavioural equivalence is appropriate for discussing compliance? We present a quantification approach based on behavioural profiles, which is a process abstraction mechanism. Behavioural profiles can be regarded as weaker than existing equivalence notions like trace equivalence, and they can be calculated efficiently. As a validation, we present a respective implementation that measures compliance of logs against a normative process model. This implementation is being evaluated in a case study with an international service provider.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Process compliance measurement is getting increasing attention in companies due to stricter legal requirements and market pressure for operational excellence. In order to judge on compliance of the business processing, the degree of behavioural deviation of a case, i.e., an observed execution sequence, is quantified with respect to a process model (referred to as fitness, or recall). Recently, different compliance measures have been proposed. Still, nearly all of them are grounded on state-based techniques and the trace equivalence criterion, in particular. As a consequence, these approaches have to deal with the state explosion problem. In this paper, we argue that a behavioural abstraction may be leveraged to measure the compliance of a process log – a collection of cases. To this end, we utilise causal behavioural profiles that capture the behavioural characteristics of process models and cases, and can be computed efficiently. We propose different compliance measures based on these profiles, discuss the impact of noise in process logs on our measures, and show how diagnostic information on non-compliance is derived. As a validation, we report on findings of applying our approach in a case study with an international service provider.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To date, a wide range of methods has been used to measure physical activity in children and adolescents. These include self-report methods such as questionnaires, activity logs, and diaries as well as objective measures of physical activity such as direct observation, doubly labeled water, heart rate monitoring, accelerometers, and pedometers. The purpose of this review is to overview the methods currently being used to measure physical activity in children and adolescents. For each measurement approach, new developments and/or innovations are identified and discussed. Particular attention is given to the use of accelerometers and the calibration of accelerometer output to units of energy expenditure to developing children.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Existing techniques for automated discovery of process models from event logs largely focus on extracting flat process models. In other words, they fail to exploit the notion of subprocess, as well as structured error handling and repetition constructs provided by contemporary process modeling notations, such as the Business Process Model and Notation (BPMN). This paper presents a technique for automated discovery of BPMN models containing subprocesses, interrupting and non-interrupting boundary events, and loop and multi-instance markers. The technique analyzes dependencies between data attributes associated with events, in order to identify subprocesses and to extract their associated logs. Parent process and subprocess models are then discovered separately using existing techniques for flat process model discovery. Finally, the resulting models and logs are heuristically analyzed in order to identify boundary events and markers. A validation with one synthetic and two real-life logs shows that process models derived using the proposed technique are more accurate and less complex than those derived with flat process model discovery techniques.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Digital forensics concerns the analysis of electronic artifacts to reconstruct events such as cyber crimes. This research produced a framework to support forensic analyses by identifying associations in digital evidence using metadata. It showed that metadata based associations can help uncover the inherent relationships between heterogeneous digital artifacts thereby aiding reconstruction of past events by identifying artifact dependencies and time sequencing. It also showed that metadata association based analysis is amenable to automation by virtue of the ubiquitous nature of metadata across forensic disk images, files, system and application logs and network packet captures. The results prove that metadata based associations can be used to extract meaningful relationships between digital artifacts, thus potentially benefiting real-life forensics investigations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In large sedimentary basins with layers of different rocks, the groundwater flow between aquifers depends on the hydraulic conductivity (K) of the separating low-permeable rocks, or aquitards. Three methods were developed to evaluate K in aquitards for areas with limited field data: • Coherence and harmonic analysis: estimates the regional-scale K based on water-level fluctuations in adjacent aquifers. • Cokriging and Bayes' rule: infers K from downhole geophysical logs. • Fluvial process model: reproduces the lithology architecture of sediment formations which can be converted to K. These proposed methods enable good estimates of K and better planning of further drillholes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper evaluates the suitability of sequence classification techniques for analyzing deviant business process executions based on event logs. Deviant process executions are those that deviate in a negative or positive way with respect to normative or desirable outcomes, such as non-compliant executions or executions that undershoot or exceed performance targets. We evaluate a range of feature types and classification methods in terms of their ability to accurately discriminate between normal and deviant executions both when deviances are infrequent (unbalanced) and when deviances are as frequent as normal executions (balanced). We also analyze the ability of the discovered rules to explain potential causes and contributing factors of observed deviances. The evaluation results show that feature types extracted using pattern mining techniques only slightly outperform those based on individual activity frequency. The results also suggest that more complex feature types ought to be explored to achieve higher levels of accuracy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Through the application of process mining, valuable evidence-based insights can be obtained about business processes in organisations. As a result the field has seen an increased uptake in recent years as evidenced by success stories and increased tool support. However, despite this impact, current performance analysis capabilities remain somewhat limited in the context of information-poor event logs. For example, natural daily and weekly patterns are not considered. In this paper a new framework for analysing event logs is defined which is based on the concept of event gap. The framework allows for a systematic approach to sophisticated performance-related analysis of event logs containing varying degrees of information. The paper formalises a range of event gap types and then presents an implementation as well as an evaluation of the proposed approach.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent modelling of socio-economic costs by the Australian railway industry in 2010 has estimated the cost of level crossing accidents to exceed AU$116 million annually. To better understand the causal factors of these accidents, a video analytics application is being developed to automatically detect near-miss incidents using forward facing videos from trains. As near-miss events occur more frequently than collisions, by detecting these occurrences there will be more safety data available for analysis. The application that is being developed will improve the objectivity of near-miss reporting by providing quantitative data about the position of vehicles at level crossings through the automatic analysis of video footage. In this paper we present a novel method for detecting near-miss occurrences at railway level crossings from video data of trains. Our system detects and localizes vehicles at railway level crossings. It also detects the position of railways to calculate the distance of the detected vehicles to the railway centerline. The system logs the information about the position of the vehicles and railway centerline into a database for further analysis by the safety data recording and analysis system, to determine whether or not the event is a near-miss. We present preliminary results of our system on a dataset of videos taken from a train that passed through 14 railway level crossings. We demonstrate the robustness of our system by showing the results of our system on day and night videos.