847 resultados para Logic-based optimization algorithm


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article presents a systematic and logical study of the topology optimized design, microfabrication, and static/dynamic performance characterization of an electro-thermo-mechanical microgripper. The microgripper is designed using a topology optimization algorithm based on a spatial filtering technique and considering different penalization coefficients for different material properties during the optimization cycle. The microgripper design has a symmetric monolithic 2D structure which consists of a complex combination of rigid links integrating both the actuating and gripping mechanisms. The numerical simulation is performed by studying the effects of convective heat transfer, thermal boundary conditions at the fixed anchors, and microgripper performance considering temperature-dependent and independent material properties. The microgripper is fabricated from a 25 mm thick nickel foil using laser microfabrication technology and its static/dynamic performance is experimentally evaluated. The static and dynamic electro-mechanical characteristics are analyzed as step response functions with respect to tweezing/actuating displacements, applied current/power, and actual electric resistance. A microgripper prototype having overall dimensions of 1mm (L) X 2.5mm (W) is able to deliver the maximum tweezing and actuating displacements of 25.5 mm and 33.2 mm along X and Y axes, respectively, under an applied power of 2.32 W. Experimental performance is compared with finite element modeling simulation results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To maintain a power system within operation limits, a level ahead planning it is necessary to apply competitive techniques to solve the optimal power flow (OPF). OPF is a non-linear and a large combinatorial problem. The Ant Colony Search (ACS) optimization algorithm is inspired by the organized natural movement of real ants and has been successfully applied to different large combinatorial optimization problems. This paper presents an implementation of Ant Colony optimization to solve the OPF in an economic dispatch context. The proposed methodology has been developed to be used for maintenance and repairing planning with 48 to 24 hours antecipation. The main advantage of this method is its low execution time that allows the use of OPF when a large set of scenarios has to be analyzed. The paper includes a case study using the IEEE 30 bus network. The results are compared with other well-known methodologies presented in the literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Constrained and unconstrained Nonlinear Optimization Problems often appear in many engineering areas. In some of these cases it is not possible to use derivative based optimization methods because the objective function is not known or it is too complex or the objective function is non-smooth. In these cases derivative based methods cannot be used and Direct Search Methods might be the most suitable optimization methods. An Application Programming Interface (API) including some of these methods was implemented using Java Technology. This API can be accessed either by applications running in the same computer where it is installed or, it can be remotely accessed through a LAN or the Internet, using webservices. From the engineering point of view, the information needed from the API is the solution for the provided problem. On the other hand, from the optimization methods researchers’ point of view, not only the solution for the problem is needed. Also additional information about the iterative process is useful, such as: the number of iterations; the value of the solution at each iteration; the stopping criteria, etc. In this paper are presented the features added to the API to allow users to access to the iterative process data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the recent research results about the development of a Observed Time Difference (OTD) based geolocation algorithm based on network trace data, for a real Universal Mobile Telecommunication System (UMTS) Network. The initial results have been published in [1], the current paper focus on increasing the sample convergence rate, and introducing a new filtering approach based on a moving average spatial filter, to increase accuracy. Field tests have been carried out for two radio environments (urban and suburban) in the Lisbon area, Portugal. The new enhancements produced a geopositioning success rate of 47% and 31%, and a median accuracy of 151 m and 337 m, for the urban and suburban environments, respectively. The implemented filter produced a 16% and 20% increase on accuracy, when compared with the geopositioned raw data. The obtained results are rather promising in accuracy and geolocation success rate. OTD positioning smoothed by moving average spatial filtering reveals a strong approach for positioning trace extracted events, vital for boosting Self-Organizing Networks (SON) over a 3G network.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This chapter considers the particle swarm optimization algorithm as a system, whose dynamics is studied from the point of view of fractional calculus. In this study some initial swarm particles are randomly changed, for the system stimulation, and its response is compared with a non-perturbed reference response. The perturbation effect in the PSO evolution is observed in the perspective of the fitness time behaviour of the best particle. The dynamics is represented through the median of a sample of experiments, while adopting the Fourier analysis for describing the phenomena. The influence upon the global dynamics is also analyzed. Two main issues are reported: the PSO dynamics when the system is subjected to random perturbations, and its modelling with fractional order transfer functions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a novel method for controlling the convergence rate of a particle swarm optimization algorithm using fractional calculus (FC) concepts. The optimization is tested for several well-known functions and the relationship between the fractional order velocity and the convergence of the algorithm is observed. The FC demonstrates a potential for interpreting evolution of the algorithm and to control its convergence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dynamic and distributed environments are hard to model since they suffer from unexpected changes, incomplete knowledge, and conflicting perspectives and, thus, call for appropriate knowledge representation and reasoning (KRR) systems. Such KRR systems must handle sets of dynamic beliefs, be sensitive to communicated and perceived changes in the environment and, consequently, may have to drop current beliefs in face of new findings or disregard any new data that conflicts with stronger convictions held by the system. Not only do they need to represent and reason with beliefs, but also they must perform belief revision to maintain the overall consistency of the knowledge base. One way of developing such systems is to use reason maintenance systems (RMS). In this paper we provide an overview of the most representative types of RMS, which are also known as truth maintenance systems (TMS), which are computational instances of the foundations-based theory of belief revision. An RMS module works together with a problem solver. The latter feeds the RMS with assumptions (core beliefs) and conclusions (derived beliefs), which are accompanied by their respective foundations. The role of the RMS module is to store the beliefs, associate with each belief (core or derived belief) the corresponding set of supporting foundations and maintain the consistency of the overall reasoning by keeping, for each represented belief, the current supporting justifications. Two major approaches are used to reason maintenance: single-and multiple-context reasoning systems. Although in the single-context systems, each belief is associated to the beliefs that directly generated it—the justification-based TMS (JTMS) or the logic-based TMS (LTMS), in the multiple context counterparts, each belief is associated with the minimal set of assumptions from which it can be inferred—the assumption-based TMS (ATMS) or the multiple belief reasoner (MBR).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Clustering ensemble methods produce a consensus partition of a set of data points by combining the results of a collection of base clustering algorithms. In the evidence accumulation clustering (EAC) paradigm, the clustering ensemble is transformed into a pairwise co-association matrix, thus avoiding the label correspondence problem, which is intrinsic to other clustering ensemble schemes. In this paper, we propose a consensus clustering approach based on the EAC paradigm, which is not limited to crisp partitions and fully exploits the nature of the co-association matrix. Our solution determines probabilistic assignments of data points to clusters by minimizing a Bregman divergence between the observed co-association frequencies and the corresponding co-occurrence probabilities expressed as functions of the unknown assignments. We additionally propose an optimization algorithm to find a solution under any double-convex Bregman divergence. Experiments on both synthetic and real benchmark data show the effectiveness of the proposed approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The bending of simply supported composite plates is analyzed using a direct collocation meshless numerical method. In order to optimize node distribution the Direct MultiSearch (DMS) for multi-objective optimization method is applied. In addition, the method optimizes the shape parameter in radial basis functions. The optimization algorithm was able to find good solutions for a large variety of nodes distribution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polysaccharides are gaining increasing attention as potential environmental friendly and sustainable building blocks in many fields of the (bio)chemical industry. The microbial production of polysaccharides is envisioned as a promising path, since higher biomass growth rates are possible and therefore higher productivities may be achieved compared to vegetable or animal polysaccharides sources. This Ph.D. thesis focuses on the modeling and optimization of a particular microbial polysaccharide, namely the production of extracellular polysaccharides (EPS) by the bacterial strain Enterobacter A47. Enterobacter A47 was found to be a metabolically versatile organism in terms of its adaptability to complex media, notably capable of achieving high growth rates in media containing glycerol byproduct from the biodiesel industry. However, the industrial implementation of this production process is still hampered due to a largely unoptimized process. Kinetic rates from the bioreactor operation are heavily dependent on operational parameters such as temperature, pH, stirring and aeration rate. The increase of culture broth viscosity is a common feature of this culture and has a major impact on the overall performance. This fact complicates the mathematical modeling of the process, limiting the possibility to understand, control and optimize productivity. In order to tackle this difficulty, data-driven mathematical methodologies such as Artificial Neural Networks can be employed to incorporate additional process data to complement the known mathematical description of the fermentation kinetics. In this Ph.D. thesis, we have adopted such an hybrid modeling framework that enabled the incorporation of temperature, pH and viscosity effects on the fermentation kinetics in order to improve the dynamical modeling and optimization of the process. A model-based optimization method was implemented that enabled to design bioreactor optimal control strategies in the sense of EPS productivity maximization. It is also critical to understand EPS synthesis at the level of the bacterial metabolism, since the production of EPS is a tightly regulated process. Methods of pathway analysis provide a means to unravel the fundamental pathways and their controls in bioprocesses. In the present Ph.D. thesis, a novel methodology called Principal Elementary Mode Analysis (PEMA) was developed and implemented that enabled to identify which cellular fluxes are activated under different conditions of temperature and pH. It is shown that differences in these two parameters affect the chemical composition of EPS, hence they are critical for the regulation of the product synthesis. In future studies, the knowledge provided by PEMA could foster the development of metabolically meaningful control strategies that target the EPS sugar content and oder product quality parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper addresses the challenging task of computing multiple roots of a system of nonlinear equations. A repulsion algorithm that invokes the Nelder-Mead (N-M) local search method and uses a penalty-type merit function based on the error function, known as 'erf', is presented. In the N-M algorithm context, different strategies are proposed to enhance the quality of the solutions and improve the overall efficiency. The main goal of this paper is to use a two-level factorial design of experiments to analyze the statistical significance of the observed differences in selected performance criteria produced when testing different strategies in the N-M based repulsion algorithm. The main goal of this paper is to use a two-level factorial design of experiments to analyze the statistical significance of the observed differences in selected performance criteria produced when testing different strategies in the N-M based repulsion algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia Civil

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Our docking program, Fitted, implemented in our computational platform, Forecaster, has been modified to carry out automated virtual screening of covalent inhibitors. With this modified version of the program, virtual screening and further docking-based optimization of a selected hit led to the identification of potential covalent reversible inhibitors of prolyl oligopeptidase activity. After visual inspection, a virtual hit molecule together with four analogues were selected for synthesis and made in one-five chemical steps. Biological evaluations on recombinant POP and FAPα enzymes, cell extracts, and living cells demonstrated high potency and selectivity for POP over FAPα and DPPIV. Three compounds even exhibited high nanomolar inhibitory activities in intact living human cells and acceptable metabolic stability. This small set of molecules also demonstrated that covalent binding and/or geometrical constraints to the ligand/protein complex may lead to an increase in bioactivity.