1000 resultados para Localized algorithms


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ubiquitous fungal pathogen Macrophomina phaseolina is best known as causing charcoal rot and premature death when host plants are subject to post-flowering stress. Overseas reports of M.phaseolina causing a rapid rot during the sprouting of Australian mungbean seed resulted in an investigation of the possible modes of infection of seed. Isolations from serial portions of 10 mungbean plants naturally infected with the pathogen revealed that on most plants there were discrete portions of infected tissue separated by apparently healthy tissue. The results from these studies, together with molecular analysis of isolates collected from infected tissue on two of the plants, suggested that aerial infection of aboveground parts by different isolates is common. Inoculations of roots and aboveground parts of mungbean plants at nine temperaturexsoil moisture incubation combinations and of detached green pods strongly supported the concept that seed infection results from infection of pods by microsclerotia, rather than from hyphae growing systemically through the plant after root or stem infection. This proposal is reinforced by anecdotal evidence that high levels of seed infection are common when rainfall occurs during pod fill, and by the isolation of M.phaseolina from soil peds collected on pods of mungbean plants in the field. However, other experiments showed that when inoculum was placed within 130mm of a green developing pod and a herbicide containing paraquat and diquat was sprayed on the inoculated plants, M.phaseolina was capable of some systemic growth from vegetative tissue into the pods and seeds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New algorithms for the continuous wavelet transform are developed that are easy to apply, each consisting of a single-pass finite impulse response (FIR) filter, and several times faster than the fastest existing algorithms. The single-pass filter, named WT-FIR-1, is made possible by applying constraint equations to least-squares estimation of filter coefficients, which removes the need for separate low-pass and high-pass filters. Non-dyadic two-scale relations are developed and it is shown that filters based on them can work more efficiently than dyadic ones. Example applications to the Mexican hat wavelet are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An algorithm is described for developing a hierarchy among a set of elements having certain precedence relations. This algorithm, which is based on tracing a path through the graph, is easily implemented by a computer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Algorithms are described for the basic arithmetic operations and square rooting in a negative base. A new operation called polarization that reverses the sign of a number facilitates subtraction, using addition. Some special features of the negative-base arithmetic are also mentioned.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ever expanding growth of the wireless access to the Internet in recent years has led to the proliferation of wireless and mobile devices to connect to the Internet. This has created the possibility of mobile devices equipped with multiple radio interfaces to connect to the Internet using any of several wireless access network technologies such as GPRS, WLAN and WiMAX in order to get the connectivity best suited for the application. These access networks are highly heterogeneous and they vary widely in their characteristics such as bandwidth, propagation delay and geographical coverage. The mechanism by which a mobile device switches between these access networks during an ongoing connection is referred to as vertical handoff and it often results in an abrupt and significant change in the access link characteristics. The most common Internet applications such as Web browsing and e-mail make use of the Transmission Control Protocol (TCP) as their transport protocol and the behaviour of TCP depends on the end-to-end path characteristics such as bandwidth and round-trip time (RTT). As the wireless access link is most likely the bottleneck of a TCP end-to-end path, the abrupt changes in the link characteristics due to a vertical handoff may affect TCP behaviour adversely degrading the performance of the application. The focus of this thesis is to study the effect of a vertical handoff on TCP behaviour and to propose algorithms that improve the handoff behaviour of TCP using cross-layer information about the changes in the access link characteristics. We begin this study by identifying the various problems of TCP due to a vertical handoff based on extensive simulation experiments. We use this study as a basis to develop cross-layer assisted TCP algorithms in handoff scenarios involving GPRS and WLAN access networks. We then extend the scope of the study by developing cross-layer assisted TCP algorithms in a broader context applicable to a wide range of bandwidth and delay changes during a handoff. And finally, the algorithms developed here are shown to be easily extendable to the multiple-TCP flow scenario. We evaluate the proposed algorithms by comparison with standard TCP (TCP SACK) and show that the proposed algorithms are effective in improving TCP behavior in vertical handoff involving a wide range of bandwidth and delay of the access networks. Our algorithms are easy to implement in real systems and they involve modifications to the TCP sender algorithm only. The proposed algorithms are conservative in nature and they do not adversely affect the performance of TCP in the absence of cross-layer information.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The analysis of sequential data is required in many diverse areas such as telecommunications, stock market analysis, and bioinformatics. A basic problem related to the analysis of sequential data is the sequence segmentation problem. A sequence segmentation is a partition of the sequence into a number of non-overlapping segments that cover all data points, such that each segment is as homogeneous as possible. This problem can be solved optimally using a standard dynamic programming algorithm. In the first part of the thesis, we present a new approximation algorithm for the sequence segmentation problem. This algorithm has smaller running time than the optimal dynamic programming algorithm, while it has bounded approximation ratio. The basic idea is to divide the input sequence into subsequences, solve the problem optimally in each subsequence, and then appropriately combine the solutions to the subproblems into one final solution. In the second part of the thesis, we study alternative segmentation models that are devised to better fit the data. More specifically, we focus on clustered segmentations and segmentations with rearrangements. While in the standard segmentation of a multidimensional sequence all dimensions share the same segment boundaries, in a clustered segmentation the multidimensional sequence is segmented in such a way that dimensions are allowed to form clusters. Each cluster of dimensions is then segmented separately. We formally define the problem of clustered segmentations and we experimentally show that segmenting sequences using this segmentation model, leads to solutions with smaller error for the same model cost. Segmentation with rearrangements is a novel variation to the segmentation problem: in addition to partitioning the sequence we also seek to apply a limited amount of reordering, so that the overall representation error is minimized. We formulate the problem of segmentation with rearrangements and we show that it is an NP-hard problem to solve or even to approximate. We devise effective algorithms for the proposed problem, combining ideas from dynamic programming and outlier detection algorithms in sequences. In the final part of the thesis, we discuss the problem of aggregating results of segmentation algorithms on the same set of data points. In this case, we are interested in producing a partitioning of the data that agrees as much as possible with the input partitions. We show that this problem can be solved optimally in polynomial time using dynamic programming. Furthermore, we show that not all data points are candidates for segment boundaries in the optimal solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Matrix decompositions, where a given matrix is represented as a product of two other matrices, are regularly used in data mining. Most matrix decompositions have their roots in linear algebra, but the needs of data mining are not always those of linear algebra. In data mining one needs to have results that are interpretable -- and what is considered interpretable in data mining can be very different to what is considered interpretable in linear algebra. --- The purpose of this thesis is to study matrix decompositions that directly address the issue of interpretability. An example is a decomposition of binary matrices where the factor matrices are assumed to be binary and the matrix multiplication is Boolean. The restriction to binary factor matrices increases interpretability -- factor matrices are of the same type as the original matrix -- and allows the use of Boolean matrix multiplication, which is often more intuitive than normal matrix multiplication with binary matrices. Also several other decomposition methods are described, and the computational complexity of computing them is studied together with the hardness of approximating the related optimization problems. Based on these studies, algorithms for constructing the decompositions are proposed. Constructing the decompositions turns out to be computationally hard, and the proposed algorithms are mostly based on various heuristics. Nevertheless, the algorithms are shown to be capable of finding good results in empirical experiments conducted with both synthetic and real-world data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The metabolism of an organism consists of a network of biochemical reactions that transform small molecules, or metabolites, into others in order to produce energy and building blocks for essential macromolecules. The goal of metabolic flux analysis is to uncover the rates, or the fluxes, of those biochemical reactions. In a steady state, the sum of the fluxes that produce an internal metabolite is equal to the sum of the fluxes that consume the same molecule. Thus the steady state imposes linear balance constraints to the fluxes. In general, the balance constraints imposed by the steady state are not sufficient to uncover all the fluxes of a metabolic network. The fluxes through cycles and alternative pathways between the same source and target metabolites remain unknown. More information about the fluxes can be obtained from isotopic labelling experiments, where a cell population is fed with labelled nutrients, such as glucose that contains 13C atoms. Labels are then transferred by biochemical reactions to other metabolites. The relative abundances of different labelling patterns in internal metabolites depend on the fluxes of pathways producing them. Thus, the relative abundances of different labelling patterns contain information about the fluxes that cannot be uncovered from the balance constraints derived from the steady state. The field of research that estimates the fluxes utilizing the measured constraints to the relative abundances of different labelling patterns induced by 13C labelled nutrients is called 13C metabolic flux analysis. There exist two approaches of 13C metabolic flux analysis. In the optimization approach, a non-linear optimization task, where candidate fluxes are iteratively generated until they fit to the measured abundances of different labelling patterns, is constructed. In the direct approach, linear balance constraints given by the steady state are augmented with linear constraints derived from the abundances of different labelling patterns of metabolites. Thus, mathematically involved non-linear optimization methods that can get stuck to the local optima can be avoided. On the other hand, the direct approach may require more measurement data than the optimization approach to obtain the same flux information. Furthermore, the optimization framework can easily be applied regardless of the labelling measurement technology and with all network topologies. In this thesis we present a formal computational framework for direct 13C metabolic flux analysis. The aim of our study is to construct as many linear constraints to the fluxes from the 13C labelling measurements using only computational methods that avoid non-linear techniques and are independent from the type of measurement data, the labelling of external nutrients and the topology of the metabolic network. The presented framework is the first representative of the direct approach for 13C metabolic flux analysis that is free from restricting assumptions made about these parameters.In our framework, measurement data is first propagated from the measured metabolites to other metabolites. The propagation is facilitated by the flow analysis of metabolite fragments in the network. Then new linear constraints to the fluxes are derived from the propagated data by applying the techniques of linear algebra.Based on the results of the fragment flow analysis, we also present an experiment planning method that selects sets of metabolites whose relative abundances of different labelling patterns are most useful for 13C metabolic flux analysis. Furthermore, we give computational tools to process raw 13C labelling data produced by tandem mass spectrometry to a form suitable for 13C metabolic flux analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis studies optimisation problems related to modern large-scale distributed systems, such as wireless sensor networks and wireless ad-hoc networks. The concrete tasks that we use as motivating examples are the following: (i) maximising the lifetime of a battery-powered wireless sensor network, (ii) maximising the capacity of a wireless communication network, and (iii) minimising the number of sensors in a surveillance application. A sensor node consumes energy both when it is transmitting or forwarding data, and when it is performing measurements. Hence task (i), lifetime maximisation, can be approached from two different perspectives. First, we can seek for optimal data flows that make the most out of the energy resources available in the network; such optimisation problems are examples of so-called max-min linear programs. Second, we can conserve energy by putting redundant sensors into sleep mode; we arrive at the sleep scheduling problem, in which the objective is to find an optimal schedule that determines when each sensor node is asleep and when it is awake. In a wireless network simultaneous radio transmissions may interfere with each other. Task (ii), capacity maximisation, therefore gives rise to another scheduling problem, the activity scheduling problem, in which the objective is to find a minimum-length conflict-free schedule that satisfies the data transmission requirements of all wireless communication links. Task (iii), minimising the number of sensors, is related to the classical graph problem of finding a minimum dominating set. However, if we are not only interested in detecting an intruder but also locating the intruder, it is not sufficient to solve the dominating set problem; formulations such as minimum-size identifying codes and locating dominating codes are more appropriate. This thesis presents approximation algorithms for each of these optimisation problems, i.e., for max-min linear programs, sleep scheduling, activity scheduling, identifying codes, and locating dominating codes. Two complementary approaches are taken. The main focus is on local algorithms, which are constant-time distributed algorithms. The contributions include local approximation algorithms for max-min linear programs, sleep scheduling, and activity scheduling. In the case of max-min linear programs, tight upper and lower bounds are proved for the best possible approximation ratio that can be achieved by any local algorithm. The second approach is the study of centralised polynomial-time algorithms in local graphs these are geometric graphs whose structure exhibits spatial locality. Among other contributions, it is shown that while identifying codes and locating dominating codes are hard to approximate in general graphs, they admit a polynomial-time approximation scheme in local graphs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Printed Circuit Board (PCB) layout design is one of the most important and time consuming phases during equipment design process in all electronic industries. This paper is concerned with the development and implementation of a computer aided PCB design package. A set of programs which operate on a description of the circuit supplied by the user in the form of a data file and subsequently design the layout of a double-sided PCB has been developed. The algorithms used for the design of the PCB optimise the board area and the length of copper tracks used for the interconnections. The output of the package is the layout drawing of the PCB, drawn on a CALCOMP hard copy plotter and a Tektronix 4012 storage graphics display terminal. The routing density (the board area required for one component) achieved by this package is typically 0.8 sq. inch per IC. The package is implemented on a DEC 1090 system in Pascal and FORTRAN and SIGN(1) graphics package is used for display generation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An important question which has to be answered in evaluting the suitability of a microcomputer for a control application is the time it would take to execute the specified control algorithm. In this paper, we present a method of obtaining closed-form formulas to estimate this time. These formulas are applicable to control algorithms in which arithmetic operations and matrix manipulations dominate. The method does not require writing detailed programs for implementing the control algorithm. Using this method, the execution times of a variety of control algorithms on a range of 16-bit mini- and recently announced microcomputers are calculated. The formulas have been verified independently by an analysis program, which computes the execution time bounds of control algorithms coded in Pascal when they are run on a specified micro- or minicomputer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using the critical percolation conductance method the energy-dependent diffusion coefficient associated with thermally assisted transfer of the R1 line excitation between single Cr3+ ions with strain-induced randomness has been calculated in the 4A2 to E(2E) transition energies. For localized states sufficiently far away from the mobility edge the energy transfer is dominated by dipolar interactions, while very close to the mobility edge it is determined by short-range exchange interactions. Using the above energy-dependent diffusion coefficient a macroscopic diffusion equation is solved for the rate of light emission by Cr3+ ion-pair traps to which single-ion excitations are transferred. The dipolar mechanism leads to good agreement with recent measurements of the pair emission rate by Koo et al. (Phys. Rev. Lett., vol.35, p.1669 (1975)) right up to the mobility edge.