974 resultados para Linear decision rules
Resumo:
Transition P Systems are a parallel and distributed computational model based on the notion of the cellular membrane structure. Each membrane determines a region that encloses a multiset of objects and evolution rules. Transition P Systems evolve through transitions between two consecutive configurations that are determined by the membrane structure and multisets present inside membranes. Moreover, transitions between two consecutive configurations are provided by an exhaustive non-deterministic and parallel application of active evolution rules subset inside each membrane of the P system. But, to establish the active evolution rules subset, it is required the previous calculation of useful and applicable rules. Hence, computation of applicable evolution rules subset is critical for the whole evolution process efficiency, because it is performed in parallel inside each membrane in every evolution step. The work presented here shows advantages of incorporating decision trees in the evolution rules applicability algorithm. In order to it, necessary formalizations will be presented to consider this as a classification problem, the method to obtain the necessary decision tree automatically generated and the new algorithm for applicability based on it.
Resumo:
Transition P systems are computational models based on basic features of biological membranes and the observation of biochemical processes. In these models, membrane contains objects multisets, which evolve according to given evolution rules. In the field of Transition P systems implementation, it has been detected the necessity to determine whichever time are going to take active evolution rules application in membranes. In addition, to have time estimations of rules application makes possible to take important decisions related to the hardware / software architectures design. In this paper we propose a new evolution rules application algorithm oriented towards the implementation of Transition P systems. The developed algorithm is sequential and, it has a linear order complexity in the number of evolution rules. Moreover, it obtains the smaller execution times, compared with the preceding algorithms. Therefore the algorithm is very appropriate for the implementation of Transition P systems in sequential devices.
Resumo:
This paper analyzes the convergence of the constant modulus algorithm (CMA) in a decision feedback equalizer using only a feedback filter. Several works had already observed that the CMA presented a better performance than decision directed algorithm in the adaptation of the decision feedback equalizer, but theoretical analysis always showed to be difficult specially due to the analytical difficulties presented by the constant modulus criterion. In this paper, we surmount such obstacle by using a recent result concerning the CM analysis, first obtained in a linear finite impulse response context with the objective of comparing its solutions to the ones obtained through the Wiener criterion. The theoretical analysis presented here confirms the robustness of the CMA when applied to the adaptation of the decision feedback equalizer and also defines a class of channels for which the algorithm will suffer from ill-convergence when initialized at the origin.
Resumo:
The economic occupation of an area of 500 ha for Piracicaba was studied with the irrigated cultures of maize, tomato, sugarcane and beans, having used models of deterministic linear programming and linear programming including risk for the Target-Motad model, where two situations had been analyzed. In the deterministic model the area was the restrictive factor and the water was not restrictive for none of the tested situations. For the first situation the gotten maximum income was of R$ 1,883,372.87 and for the second situation it was of R$ 1,821,772.40. In the model including risk a producer that accepts risk can in the first situation get the maximum income of R$ 1,883,372. 87 with a minimum risk of R$ 350 year(-1), and in the second situation R$ 1,821,772.40 with a minimum risk of R$ 40 year(-1). Already a producer averse to the risk can get in the first situation a maximum income of R$ 1,775,974.81 with null risk and for the second situation R$ 1.707.706, 26 with null risk, both without water restriction. These results stand out the importance of the inclusion of the risk in supplying alternative occupations to the producer, allowing to a producer taking of decision considered the risk aversion and the pretension of income.
Resumo:
This paper describes the construction of Australia-wide soil property predictions from a compiled national soils point database. Those properties considered include pH, organic carbon, total phosphorus, total nitrogen, thickness. texture, and clay content. Many of these soil properties are used directly in environmental process modelling including global climate change models. Models are constructed at the 250-m resolution using decision trees. These relate the soil property to the environment through a suite of environmental predictors at the locations where measurements are observed. These models are then used to extend predictions to the continental extent by applying the rules derived to the exhaustively available environmental predictors. The methodology and performance is described in detail for pH and summarized for other properties. Environmental variables are found to be important predictors, even at the 250-m resolution at which they are available here as they can describe the broad changes in soil property.
Resumo:
The classification rules of linear discriminant analysis are defined by the true mean vectors and the common covariance matrix of the populations from which the data come. Because these true parameters are generally unknown, they are commonly estimated by the sample mean vector and covariance matrix of the data in a training sample randomly drawn from each population. However, these sample statistics are notoriously susceptible to contamination by outliers, a problem compounded by the fact that the outliers may be invisible to conventional diagnostics. High-breakdown estimation is a procedure designed to remove this cause for concern by producing estimates that are immune to serious distortion by a minority of outliers, regardless of their severity. In this article we motivate and develop a high-breakdown criterion for linear discriminant analysis and give an algorithm for its implementation. The procedure is intended to supplement rather than replace the usual sample-moment methodology of discriminant analysis either by providing indications that the dataset is not seriously affected by outliers (supporting the usual analysis) or by identifying apparently aberrant points and giving resistant estimators that are not affected by them.
Resumo:
Objective: To develop a model to predict the bleeding source and identify the cohort amongst patients with acute gastrointestinal bleeding (GIB) who require urgent intervention, including endoscopy. Patients with acute GIB, an unpredictable event, are most commonly evaluated and managed by non-gastroenterologists. Rapid and consistently reliable risk stratification of patients with acute GIB for urgent endoscopy may potentially improve outcomes amongst such patients by targeting scarce health-care resources to those who need it the most. Design and methods: Using ICD-9 codes for acute GIB, 189 patients with acute GIB and all. available data variables required to develop and test models were identified from a hospital medical records database. Data on 122 patients was utilized for development of the model and on 67 patients utilized to perform comparative analysis of the models. Clinical data such as presenting signs and symptoms, demographic data, presence of co-morbidities, laboratory data and corresponding endoscopic diagnosis and outcomes were collected. Clinical data and endoscopic diagnosis collected for each patient was utilized to retrospectively ascertain optimal management for each patient. Clinical presentations and corresponding treatment was utilized as training examples. Eight mathematical models including artificial neural network (ANN), support vector machine (SVM), k-nearest neighbor, linear discriminant analysis (LDA), shrunken centroid (SC), random forest (RF), logistic regression, and boosting were trained and tested. The performance of these models was compared using standard statistical analysis and ROC curves. Results: Overall the random forest model best predicted the source, need for resuscitation, and disposition with accuracies of approximately 80% or higher (accuracy for endoscopy was greater than 75%). The area under ROC curve for RF was greater than 0.85, indicating excellent performance by the random forest model Conclusion: While most mathematical models are effective as a decision support system for evaluation and management of patients with acute GIB, in our testing, the RF model consistently demonstrated the best performance. Amongst patients presenting with acute GIB, mathematical models may facilitate the identification of the source of GIB, need for intervention and allow optimization of care and healthcare resource allocation; these however require further validation. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
This study aims to identify and prioritize the stakeholders involved in making decisions in a sports organization. A multiple linear regression analysis was used to assess the influence of the attributes of power, legitimacy and urgency on the salience of the various stakeholders. The results showed a convergence of external and internal decision makers' perceptions, concerning the three main stakeholder groups: top management, sponsors and member association. Pearson correlations identified four types of stakeholder: definitive, dangerous, demanding and non-stakeholders. A generalized differentiation was also found in stakeholder classification, regarding evaluation of attributes, between external and internal decision makers. In addition, the study suggests the success of organizations' management will depend on correct identification of stakeholders and consequent assessment of their relevance, in order to highlight who should get priority, and how, in strategic decision making.
Resumo:
Electricity market players operating in a liberalized environment requires access to an adequate decision support tool, allowing them to consider all the business opportunities and take strategic decisions. Ancillary services represent a good negotiation opportunity that must be considered by market players. For this, decision support tools must include ancillary market simulation. This paper proposes two different methods (Linear Programming and Genetic Algorithm approaches) for ancillary services dispatch. The methodologies are implemented in MASCEM, a multi-agent based electricity market simulator. A test case concerning the dispatch of Regulation Down, Regulation Up, Spinning Reserve and Non-Spinning Reserve services is included in this paper.
Resumo:
In almost all industrialized countries, the energy sector has suffered a severe restructuring that originated a greater complexity in market players’ interactions. The complexity that these changes brought made way for the creation of decision support tools that facilitate the study and understanding of these markets. MASCEM – “Multiagent Simulator for Competitive Electricity Markets” arose in this context providing a framework for evaluating new rules, new behaviour, and new participants in deregulated electricity markets. MASCEM uses game theory, machine learning techniques, scenario analysis and optimisation techniques to model market agents and to provide them with decision-support. ALBidS is a multiagent system created to provide decision support to market negotiating players. Fully integrated with MASCEM it considers several different methodologies based on very distinct approaches. The Six Thinking Hats is a powerful technique used to look at decisions from different perspectives. This tool’s goal is to force the thinker to move outside his habitual thinking style. It was developed to be used mainly at meetings in order to “run better meetings, make faster decisions”. This dissertation presents a study about the applicability of the Six Thinking Hats technique in Decision Support Systems, particularly with the multiagent paradigm like the MASCEM simulator. As such this work’s proposal is of a new agent, a meta-learner based on STH technique that organizes several different ALBidS’ strategies and combines the distinct answers into a single one that, expectedly, out-performs any of them.
Resumo:
Dissertação apresentada para obtenção do Grau de Doutor em Engenharia Electrotécnica e de Computadores – Sistemas Digitais e Percepcionais pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
This paper presents a decision support tool methodology to help virtual power players (VPPs) in the Smart Grid (SGs) context to solve the day-ahead energy resource scheduling considering the intensive use of Distributed Generation (DG) and Vehicle-To-Grid (V2G). The main focus is the application of a new hybrid method combing a particle swarm approach and a deterministic technique based on mixedinteger linear programming (MILP) to solve the day-ahead scheduling minimizing total operation costs from the aggregator point of view. A realistic mathematical formulation, considering the electric network constraints and V2G charging and discharging efficiencies is presented. Full AC power flow calculation is included in the hybrid method to allow taking into account the network constraints. A case study with a 33-bus distribution network and 1800 V2G resources is used to illustrate the performance of the proposed method.
Resumo:
Economics is a social science which, therefore, focuses on people and on the decisions they make, be it in an individual context, or in group situations. It studies human choices, in face of needs to be fulfilled, and a limited amount of resources to fulfill them. For a long time, there was a convergence between the normative and positive views of human behavior, in that the ideal and predicted decisions of agents in economic models were entangled in one single concept. That is, it was assumed that the best that could be done in each situation was exactly the choice that would prevail. Or, at least, that the facts that economics needed to explain could be understood in the light of models in which individual agents act as if they are able to make ideal decisions. However, in the last decades, the complexity of the environment in which economic decisions are made and the limits on the ability of agents to deal with it have been recognized, and incorporated into models of decision making in what came to be known as the bounded rationality paradigm. This was triggered by the incapacity of the unboundedly rationality paradigm to explain observed phenomena and behavior. This thesis contributes to the literature in three different ways. Chapter 1 is a survey on bounded rationality, which gathers and organizes the contributions to the field since Simon (1955) first recognized the necessity to account for the limits on human rationality. The focus of the survey is on theoretical work rather than the experimental literature which presents evidence of actual behavior that differs from what classic rationality predicts. The general framework is as follows. Given a set of exogenous variables, the economic agent needs to choose an element from the choice set that is avail- able to him, in order to optimize the expected value of an objective function (assuming his preferences are representable by such a function). If this problem is too complex for the agent to deal with, one or more of its elements is simplified. Each bounded rationality theory is categorized according to the most relevant element it simplifes. Chapter 2 proposes a novel theory of bounded rationality. Much in the same fashion as Conlisk (1980) and Gabaix (2014), we assume that thinking is costly in the sense that agents have to pay a cost for performing mental operations. In our model, if they choose not to think, such cost is avoided, but they are left with a single alternative, labeled the default choice. We exemplify the idea with a very simple model of consumer choice and identify the concept of isofin curves, i.e., sets of default choices which generate the same utility net of thinking cost. Then, we apply the idea to a linear symmetric Cournot duopoly, in which the default choice can be interpreted as the most natural quantity to be produced in the market. We find that, as the thinking cost increases, the number of firms thinking in equilibrium decreases. More interestingly, for intermediate levels of thinking cost, an equilibrium in which one of the firms chooses the default quantity and the other best responds to it exists, generating asymmetric choices in a symmetric model. Our model is able to explain well-known regularities identified in the Cournot experimental literature, such as the adoption of different strategies by players (Huck et al. , 1999), the inter temporal rigidity of choices (Bosch-Dom enech & Vriend, 2003) and the dispersion of quantities in the context of di cult decision making (Bosch-Dom enech & Vriend, 2003). Chapter 3 applies a model of bounded rationality in a game-theoretic set- ting to the well-known turnout paradox in large elections, pivotal probabilities vanish very quickly and no one should vote, in sharp contrast with the ob- served high levels of turnout. Inspired by the concept of rhizomatic thinking, introduced by Bravo-Furtado & Côrte-Real (2009a), we assume that each per- son is self-delusional in the sense that, when making a decision, she believes that a fraction of the people who support the same party decides alike, even if no communication is established between them. This kind of belief simplifies the decision of the agent, as it reduces the number of players he believes to be playing against { it is thus a bounded rationality approach. Studying a two-party first-past-the-post election with a continuum of self-delusional agents, we show that the turnout rate is positive in all the possible equilibria, and that it can be as high as 100%. The game displays multiple equilibria, at least one of which entails a victory of the bigger party. The smaller one may also win, provided its relative size is not too small; more self-delusional voters in the minority party decreases this threshold size. Our model is able to explain some empirical facts, such as the possibility that a close election leads to low turnout (Geys, 2006), a lower margin of victory when turnout is higher (Geys, 2006) and high turnout rates favoring the minority (Bernhagen & Marsh, 1997).
Resumo:
This work presents a model and a heuristic to solve the non-emergency patients transport (NEPT) service issues given the new rules recently established in Portugal. The model follows the same principle of the Team Orienteering Problem by selecting the patients to be included in the routes attending the maximum reduction in costs when compared with individual transportation. This model establishes the best sets of patients to be transported together. The model was implemented in AMPL and a compact formulation was solved using NEOS Server. A heuristic procedure based on iteratively solving problems with one vehicle was presented, and this heuristic provides good results in terms of accuracy and computation time.
Resumo:
Many democratic decision making institutions involve quorum rules. Such rules are commonly motivated by concerns about the “legitimacy” or “representativeness” of decisions reached when only a subset of eligible voters participates. A prominent example of this can be found in the context of direct democracy mechanisms, such as referenda and initiatives. We conduct a laboratory experiment to investigate the consequences of the two most common types of quorum rules: a participation quorum and an approval quorum. We find that both types of quora lead to lower participation rates, dramatically increasing the likelihood of full-fledged electoral boycotts on the part of those who endorse the Status Quo. This discouraging effect is significantly larger under a participation quorum than under an approval quorum.