924 resultados para Ligand-based methodologies
Resumo:
Three-dimensional achiral coordination polymers of the general formula M2(D, l-NHCH (COO)CH2COO)2·C4H4N2 where M = Ni and Co and pyrazine acts as the linker molecule have been prepared under hydrothermal conditions starting with [M(L-NHCH(COO)CH2COO)·3H2O] possessing a helical chain structure. A three-dimensional hybrid compound of the formula Pb2.5[N{CH(COO) CH2COO}22H2O] has also been prepared hydrothermally starting with aspartic acid and Pb(NO3)2. In this lead compound, where a secondary amine formed by the dimerisation of aspartic acid acts as the ligand, there is two-dimensional inorganic connectivity and one-dimensional organic connectivity.
Resumo:
This thesis studies quantile residuals and uses different methodologies to develop test statistics that are applicable in evaluating linear and nonlinear time series models based on continuous distributions. Models based on mixtures of distributions are of special interest because it turns out that for those models traditional residuals, often referred to as Pearson's residuals, are not appropriate. As such models have become more and more popular in practice, especially with financial time series data there is a need for reliable diagnostic tools that can be used to evaluate them. The aim of the thesis is to show how such diagnostic tools can be obtained and used in model evaluation. The quantile residuals considered here are defined in such a way that, when the model is correctly specified and its parameters are consistently estimated, they are approximately independent with standard normal distribution. All the tests derived in the thesis are pure significance type tests and are theoretically sound in that they properly take the uncertainty caused by parameter estimation into account. -- In Chapter 2 a general framework based on the likelihood function and smooth functions of univariate quantile residuals is derived that can be used to obtain misspecification tests for various purposes. Three easy-to-use tests aimed at detecting non-normality, autocorrelation, and conditional heteroscedasticity in quantile residuals are formulated. It also turns out that these tests can be interpreted as Lagrange Multiplier or score tests so that they are asymptotically optimal against local alternatives. Chapter 3 extends the concept of quantile residuals to multivariate models. The framework of Chapter 2 is generalized and tests aimed at detecting non-normality, serial correlation, and conditional heteroscedasticity in multivariate quantile residuals are derived based on it. Score test interpretations are obtained for the serial correlation and conditional heteroscedasticity tests and in a rather restricted special case for the normality test. In Chapter 4 the tests are constructed using the empirical distribution function of quantile residuals. So-called Khmaladze s martingale transformation is applied in order to eliminate the uncertainty caused by parameter estimation. Various test statistics are considered so that critical bounds for histogram type plots as well as Quantile-Quantile and Probability-Probability type plots of quantile residuals are obtained. Chapters 2, 3, and 4 contain simulations and empirical examples which illustrate the finite sample size and power properties of the derived tests and also how the tests and related graphical tools based on residuals are applied in practice.
Resumo:
Kinetic measurements of enzyme activity indicate that type I pantothenate kinase from Mycobacterium tuberculosis has dual substrate specificity for ATP and GTP, unlike the enzyme from Escherichia coli, which shows a higher specificity for ATP. A molecular explanation for the difference in the specificities of the two homologous enzymes is provided by the crystal structures of the complexes of the M. tuberculosis enzyme with (1) GMPPCP and pantothenate, (2) GDP and phosphopantothenate, (3) GDP, (4) GDP and pantothenate, (5) AMPPCP, and (6) GMPPCP, reported here, and the structures of the complexes of the two enzymes involving coenzyme A and different adenyl nucleotides reported earlier. The explanation is substantially based on two critical substitutions in the amino acid sequence and the local conformational change resulting from them. The structures also provide a rationale for the movement of ligands during the action of the mycobacterial enzyme. Dual specificity of the type exhibited by this enzyme is rare. The change in locations of ligands during action,observed in the case of the M. tuberculosis enzyme, is unusual, so is the striking difference between two homologous enzymes in the geometryof the binding site, locations of ligands, and specificity. Furthermore, the dual specificity of the mycobacterial enzyme appears to have been caused by a biological necessity. (C) 2010 Elsevier Ltd.All rights reserved.
Resumo:
The extremities of chromosomes end in a G-rich single-stranded overhang that has been implicated in the onset of the replicate senescence. The repeated sequence forming a G-overhang is able to adopt a four-stranded DNA structure called G-quadruplex, which is a poor substrate for the enzyme telomerase. Small molecule based ligands that selectively stabilize the telomeric G-quadruplex DNA, induce telomere shortening eventually leading to cell death. Herein, we have investigated the G-quadruplex DNA interaction with two isomeric bisbenzimidazole-based compounds that differ in terms of shape (V-shaped angular vs linear).While the linear isomer induced some stabilization of the intramolecular G-quadruplex structure generated in the presence of Na+ the other, having V-shaped central planar core, caused a dramatic structural alteration of the latter, above a threshold concentration. This transition was evident from the pronounced changes observed in the circular dichroism spectra and from the get mobility shift assa involving the G-quadruples DNA. Notably, this angular isomer could also induce the G-quadruplex formation in the absence of any added cation. The ligand-quadruples complexes were investigated by computational molecular modeling, providing further information on structure-activity relationships. Finally, TRAP (telomerase repeat amplification protocol) experiments demonstrated that the angular isomer is selective toward the inhibition of telomerase activity.
Resumo:
Human sport doping control analysis is a complex and challenging task for anti-doping laboratories. The List of Prohibited Substances and Methods, updated annually by World Anti-Doping Agency (WADA), consists of hundreds of chemically and pharmacologically different low and high molecular weight compounds. This poses a considerable challenge for laboratories to analyze for them all in a limited amount of time from a limited sample aliquot. The continuous expansion of the Prohibited List obliges laboratories to keep their analytical methods updated and to research new available methodologies. In this thesis, an accurate mass-based analysis employing liquid chromatography - time-of-flight mass spectrometry (LC-TOFMS) was developed and validated to improve the power of doping control analysis. New analytical methods were developed utilizing the high mass accuracy and high information content obtained by TOFMS to generate comprehensive and generic screening procedures. The suitability of LC-TOFMS for comprehensive screening was demonstrated for the first time in the field with mass accuracies better than 1 mDa. Further attention was given to generic sample preparation, an essential part of screening analysis, to rationalize the whole work flow and minimize the need for several separate sample preparation methods. Utilizing both positive and negative ionization allowed the detection of almost 200 prohibited substances. Automatic data processing produced a Microsoft Excel based report highlighting the entries fulfilling the criteria of the reverse data base search (retention time (RT), mass accuracy, isotope match). The quantitative performance of LC-TOFMS was demonstrated with morphine, codeine and their intact glucuronide conjugates. After a straightforward sample preparation the compounds were analyzed directly without the need for hydrolysis, solvent transfer, evaporation or reconstitution. The hydrophilic interaction technique (HILIC) provided good chromatographic separation, which was critical for the morphine glucuronide isomers. A wide linear range (50-5000 ng/ml) with good precision (RSD<10%) and accuracy (±10%) was obtained, showing comparable or better performance to other methods used. In-source collision-induced dissociation (ISCID) allowed confirmation analysis with three diagnostic ions with a median mass accuracy of 1.08 mDa and repeatable ion ratios fulfilling WADA s identification criteria. The suitability of LC-TOFMS for screening of high molecular weight doping agents was demonstrated with plasma volume expanders (PVE), namely dextran and hydroxyethylstarch (HES). Specificity of the assay was improved, since interfering matrix compounds were removed by size exclusion chromatography (SEC). ISCID produced three characteristic ions with an excellent mean mass accuracy of 0.82 mDa at physiological concentration levels. In summary, by combining TOFMS with a proper sample preparation and chromatographic separation, the technique can be utilized extensively in doping control laboratories for comprehensive screening of chemically different low and high molecular weight compounds, for quantification of threshold substances and even for confirmation. LC-TOFMS rationalized the work flow in doping control laboratories by simplifying the screening scheme, expediting reporting and minimizing the analysis costs. Therefore LC-TOFMS can be exploited widely in doping control, and the need for several separate analysis techniques is reduced.
Resumo:
Background. Several types of networks, such as transcriptional, metabolic or protein-protein interaction networks of various organisms have been constructed, that have provided a variety of insights into metabolism and regulation. Here, we seek to exploit the reaction-based networks of three organisms for comparative genomics. We use concepts from spectral graph theory to systematically determine how differences in basic metabolism of organisms are reflected at the systems level and in the overall topological structures of their metabolic networks. Methodology/Principal Findings. Metabolome-based reaction networks of Mycobacterium tuberculosis, Mycobacterium leprae and Escherichia coli have been constructed based on the KEGG LIGAND database, followed by graph spectral analysis of the network to identify hubs as well as the sub-clustering of reactions. The shortest and alternate paths in the reaction networks have also been examined. Sub-cluster profiling demonstrates that reactions of the mycolic acid pathway in mycobacteria form a tightly connected sub-cluster. Identification of hubs reveals reactions involving glutamate to be central to mycobacterial metabolism, and pyruvate to be at the centre of the E. coli metabolome. The analysis of shortest paths between reactions has revealed several paths that are shorter than well established pathways. Conclusions. We conclude that severe downsizing of the leprae genome has not significantly altered the global structure of its reaction network but has reduced the total number of alternate paths between its reactions while keeping the shortest paths between them intact. The hubs in the mycobacterial networks that are absent in the human metabolome can be explored as potential drug targets. This work demonstrates the usefulness of constructing metabolome based networks of organisms and the feasibility of their analyses through graph spectral methods. The insights obtained from such studies provide a broad overview of the similarities and differences between organisms, taking comparative genomics studies to a higher dimension.
Resumo:
A series of mixed ligand cobalt(III) complexes having the general formula Co(EA)X [where EA = dianion of N,N′-ethylenebis(acetylacetonimine) and X = anion of isonitroso-acetylacetone, IAA; isonitrosobenzoylacetone, IBA; isonitrosodibenzoylmethane, IDBM; isonitrosoethylacetoacetate, IEA; isonitrosoacetoacetanillide, IAN; isonitrosoethylmethylketone, IEMK; isonitrosobenzylmethylketone, IBMK and isonitrosopropiophenone, IPP] have been synthesised and characterised. A facial-cis-β structure (cis with respect to the coordinated two oxygen atoms of EA) with N,N,N,O,O,O ligational environment has been assigned for the complexes. The characterisation of the complexes has been based upon chemical analysis, electrical conductivity, magnetic moment, IR, PMR and electronic spectra.
Resumo:
Mutation and/or dysfunction of signaling proteins in the mitogen activated protein kinase (MAPK) signal transduction pathway are frequently observed in various kinds of human cancer. Consistent with this fact, in the present study, we experimentally observe that the epidermal growth factor (EGF) induced activation profile of MAP kinase signaling is not straightforward dose-dependent in the PC3 prostate cancer cells. To find out what parameters and reactions in the pathway are involved in this departure from the normal dose-dependency, a model-based pathway analysis is performed. The pathway is mathematically modeled with 28 rate equations yielding those many ordinary differential equations (ODE) with kinetic rate constants that have been reported to take random values in the existing literature. This has led to us treating the ODE model of the pathways kinetics as a random differential equations (RDE) system in which the parameters are random variables. We show that our RDE model captures the uncertainty in the kinetic rate constants as seen in the behavior of the experimental data and more importantly, upon simulation, exhibits the abnormal EGF dose-dependency of the activation profile of MAP kinase signaling in PC3 prostate cancer cells. The most likely set of values of the kinetic rate constants obtained from fitting the RDE model into the experimental data is then used in a direct transcription based dynamic optimization method for computing the changes needed in these kinetic rate constant values for the restoration of the normal EGF dose response. The last computation identifies the parameters, i.e., the kinetic rate constants in the RDE model, that are the most sensitive to the change in the EGF dose response behavior in the PC3 prostate cancer cells. The reactions in which these most sensitive parameters participate emerge as candidate drug targets on the signaling pathway. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Lanthanide coordination polymers of the general formula Ln(2)(L)(5)(NO3)(H2O)(4)](n) (Ln = Eu (1), Tb (2), Gd (3)) supported by a novel aromatic carboxylate ligand 4-((1H-benzod]imidazol-1-yl)methyl)benzoic acid (HL) have been synthesized, characterized, and their photoluminescence behavior is examined. The powder X-ray diffraction patterns of complexes 1-3 showed that 1-3 are isostructural; thus, 1 has been chosen as an example to discuss in detail about the molecular structure by single-crystal X-ray diffraction. Complex 1 is a one-dimensional (1D) helical chain-like coordination polymer consisting of unique unsymmetrical dinuclear lanthanide building blocks. The 1D chains are further linked by the significant intermolecular hydrogen-bonding interactions to form a two-dimensional supramolecular network. The Tb3+ complex exhibits bright green luminescence efficiency in the solid state with a quantum yield of 15%. On the other hand, poor luminescence efficiency has been noted for Eu3+-benzoate complex.
Resumo:
The Cu atoms in aquabis(tert-butyl acetoacetato)copper(II),[Cu(C8H13O3)(2)(H2O)], and bis(dipivaloylmethanido)copper(II), [Cu(C11H19O2)(2)], adopt square-pyramidal and planar conformations, respectively, with average Cu--O distances of 1.933 Angstrom in the former (not including the water ligand) and 1.892 Angstrom in the latter. It is interesting to note that the lability of the tert-butyl and methyl groups in both structures, which renders even the location of the terminal C atoms difficult, is reduced at T = 130 K, enabling location of all the protons in the difference Fourier map.
Resumo:
One of the hallmarks of engineering design is the design synthesis phase where the creativity of the designer most prominently comes into play as solutions are generated to meet underlying needs. Over the past decades, methodologies for generating concepts and design solutions have matured to the point that computation-based synthesis provides a means to explore a wider variety of solutions and take over more tedious design tasks. This paper reviews advances in function-based, grammar-based, and analogy-based synthesis approaches and their contributions to computational design synthesis research in the last decade. DOI: 10.1115/1.3593409]
Resumo:
Existing soil nailing design methodologies are essentially based on limit equilibrium principles that together with a lumped factor of safety or a set of partial factors on the material parameters and loads account for uncertainties in design input parameter values. Recent trends in the development of design procedures for earth retaining structures are towards load and resistance factor design (LRFD). In the present study, a methodology for the use of LRFD in the context of soil-nail walls is proposed and a procedure to determine reliability-based load and resistance factors is illustrated for important strength limit states with reference to a 10 m high soil-nail wall. The need for separate partial factors for each limit state is highlighted, and the proposed factors are compared with those existing in the literature.
Resumo:
In this paper, the synthesis and characterization of some imidazole-based gold-selenolates are described. This study indicates that the nature of selenolate plays an important role in ligand exchange reactions in gold(I) selenolates. Furthermore, the reactivity of imidazole-based gold(I) selenolates toward nucleophiles such as selenols and phosphines is strikingly different from that of the N,N-dimethylaminobenzylamine-based gold(I) complexes. The presence of Se ... N non-bonded interactions in N,N-dimethylaminobenzylamine-based gold(I) complexes modulates the reactivity of Au(I) centre towards incoming nucleophiles.
Resumo:
A computational pipeline PocketAnnotate for functional annotation of proteins at the level of binding sites has been proposed in this study. The pipeline integrates three in-house algorithms for site-based function annotation: PocketDepth, for prediction of binding sites in protein structures; PocketMatch, for rapid comparison of binding sites and PocketAlign, to obtain detailed alignment between pair of binding sites. A novel scheme has been developed to rapidly generate a database of non-redundant binding sites. For a given input protein structure, putative ligand-binding sites are identified, matched in real time against the database and the query substructure aligned with the promising hits, to obtain a set of possible ligands that the given protein could bind to. The input can be either whole protein structures or merely the substructures corresponding to possible binding sites. Structure-based function annotation at the level of binding sites thus achieved could prove very useful for cases where no obvious functional inference can be obtained based purely on sequence or fold-level analyses. An attempt has also been made to analyse proteins of no known function from Protein Data Bank. PocketAnnotate would be a valuable tool for the scientific community and contribute towards structure-based functional inference. The web server can be freely accessed at http://proline.biochem.iisc.ernet.in/pocketannotate/.
Resumo:
Ensuring reliable operation over an extended period of time is one of the biggest challenges facing present day electronic systems. The increased vulnerability of the components to atmospheric particle strikes poses a big threat in attaining the reliability required for various mission critical applications. Various soft error mitigation methodologies exist to address this reliability challenge. A general solution to this problem is to arrive at a soft error mitigation methodology with an acceptable implementation overhead and error tolerance level. This implementation overhead can then be reduced by taking advantage of various derating effects like logical derating, electrical derating and timing window derating, and/or making use of application redundancy, e. g. redundancy in firmware/software executing on the so designed robust hardware. In this paper, we analyze the impact of various derating factors and show how they can be profitably employed to reduce the hardware overhead to implement a given level of soft error robustness. This analysis is performed on a set of benchmark circuits using the delayed capture methodology. Experimental results show upto 23% reduction in the hardware overhead when considering individual and combined derating factors.