976 resultados para Left-ventricular Fibrosis
Resumo:
OBJECTIVES: ,,,,,The prevalence of electrocardiographic and echocardiographic abnormalities in chronic obstructive pulmonary disease according to disease severity has not yet been established. The aim of this study was to assess the prevalence of electrocardiographic and echocardiographic abnormalities in chronic obstructive pulmonary disease patients according to disease severity. ,,,, ,,,, ,,,,,METHODS: ,,,,,The study included 25 mild/moderate chronic obstructive pulmonary disease patients and 25 severe/very severe chronic obstructive pulmonary disease patients. All participants underwent clinical evaluation, spirometry and electrocardiography/echocardiography. ,,,, ,,,, ,,,,,RESULTS: ,,,,,Electrocardiography and echocardiography showed Q-wave alterations and segmental contractility in five (10%) patients. The most frequent echocardiographic finding was mild left diastolic dysfunction (88%), independent of chronic obstructive pulmonary disease stage. The proportion of right ventricular overload (p<0.05) and blockage of the anterosuperior division of the left bundle branch were higher in patients with greater obstruction. In an echocardiographic analysis, mild/moderate chronic obstructive pulmonary disease patients showed more abnormalities in segmental contractility (p<0.05), whereas severe/very severe chronic obstructive pulmonary disease patients showed a higher prevalence of right ventricular overload (p<0.05), increased right cardiac chamber (p<0.05) and higher values of E-wave deceleration time (p<0.05). Age, sex, systemic arterial hypertension, C-reactive protein and disease were included as independent variables in a multiple linear regression; only disease severity was predictive of the E-wave deceleration time [r2 = 0.26, p = 0.01]. ,,,, ,,,, ,,,,,CONCLUSION: ,,,,,Chronic obstructive pulmonary disease patients have a high prevalence of left ventricular diastolic dysfunction, which is associated with disease severity. Because of this association, it is important to exclude decompensated heart failure during chronic obstructive pulmonary disease exacerbation.
Resumo:
1. A method for obtaining the end-systolic left ventricular (LV) pressure-diameter and stress-diameter relationships in man was critically analyzed.2. Pressure-diameter and stress-diameter relationships were determined throughout the cardiac cycle by combining standard LV manometry with M-mode echocardiography. Nine adult patients with heart disease and without heart failure were studied during intracardiac catheterization under three different conditions of arterial pressure, i.e., basal (B) condition (mean +/- SD systolic pressure, 102 +/- 10 mmHg) and two stable states of arterial hypertension (H(I), 121 +/- 12 mmHg; H(II), 147 +/- 17 mmHg) induced by venous infusion of phenylephrine after parasympathetic autonomic blockade with 0.04 mg/kg atropine.3. Significant reflex heart rate variation with arterial hypertension was observed (B, 115 +/- 20 bpm; H(I), 103 +/- 14 bpm; H(II), 101 +/- 13 bpm) in spite of the parasympathetic blockade with atropine. The linear end-systolic pressure-diameter and stress-diameter relationships ranged from 53.0 to 160.0 mmHg/cm and from 97.0 to 195.0 g/cm3, respectively.4. The end-systolic LV pressure-diameter and stress-diameter relationship lines presented high and variable slopes. The slopes, which are indicators of myocardial contractility, are susceptible to modifications by small deviations in the measurement of the ventricular diameter or by delay in the pressure curve recording.
Resumo:
The effect of changes in left ventricular (LV) shape and dimensions due to acute arterial hypertension induced by mechanical obstruction of the aorta for 10 min on LV mass values estimated by M-mode echocardiogram was studied in 14 anesthetized dogs. Although the systolic pressure increased from 117.5 +/- 19.9 to 175.4 +/- 22.9 mmHg altered ventricular diameter from 2.77 +/- 0.49 cm to 3.17 +/- 0.67 cm (P<0.05) and wall thickness from 0.83 +/- 0.09 to 0.75 +/- 0.09 cm (P<0.05), LV mass estimated before (73.5 +/- 19.1 g) and after (78.3 +/- 26.4 g) hypertension was not significantly different. We demonstrate here for the first time that changes in LV dimensions induced by acute arterial hypertension do not modify LV mass values estimated by the M-mode electrocardiogram method.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Objective - To determine effects of reducing the diameter of the left ventricle of dogs by plication of the left ventricular free wall. Animals - 8 healthy adult mixed-breed dogs. Procedure - Left lateral thoracotomy and a T-shaped pericardiotomy were performed. The free wall of the left ventricle was imbricated with 3 interrupted transfixing sutures applied in a horizontal mattress pattern, using 3-0 polypropylene suture assembled on a straight cutting needle. Surgeons were careful to avoid the coronary vessels. Echocardiography was performed 24 hours before and 48 hours after surgery. Electrocardiography was performed before and 1, 2, 7, 15, 21, 30, and 60 days after surgery. Results - Echocardiographic measurements revealed that the diameter of the left ventricle was reduced by a mean of 23.5%. Electrocardiography revealed ventricular premature complexes 24 hours after surgery that regressed without treatment during the first week after surgery. Conclusions and Clinical Relevance - Plication of the left ventricular free wall of dogs can reduce end-diastolic and end-systolic dimensions of the left ventricle. The technique is simple and does not require cardiopulmonary bypass. According to Laplace's law, the reduction of cardiac diameter leads to reduction on free-wall tension and may improve left ventricular function in dilatated hearts. Thus, additional studies involving dogs with dilated cardiomyopathy should be conducted.