963 resultados para Lefschetz-Hopf Theorem
Resumo:
We consider a field theory with target space being the two dimensional sphere S2 and defined on the space-time S3 × . The Lagrangean is the square of the pull-back of the area form on S2. It is invariant under the conformal group SO(4,2) and the infinite dimensional group of area preserving diffeomorphisms of S2. We construct an infinite number of exact soliton solutions with non-trivial Hopf topological charges. The solutions spin with a frequency which is bounded above by a quantity proportional to the inverse of the radius of S3. The construction of the solutions is made possible by an ansatz which explores the conformal symmetry and a U(1) subgroup of the area preserving diffeomorphism group. © SISSA 2006.
Resumo:
We consider the Lorenz system ẋ = σ(y - x), ẏ = rx - y - xz and ż = -bz + xy; and the Rössler system ẋ = -(y + z), ẏ = x + ay and ż = b - cz + xz. Here, we study the Hopf bifurcation which takes place at q± = (±√br - b,±√br - b, r - 1), in the Lorenz case, and at s± = (c+√c2-4ab/2, -c+√c2-4ab/2a, c±√c2-4ab/2a) in the Rössler case. As usual this Hopf bifurcation is in the sense that an one-parameter family in ε of limit cycles bifurcates from the singular point when ε = 0. Moreover, we can determine the kind of stability of these limit cycles. In fact, for both systems we can prove that all the bifurcated limit cycles in a neighborhood of the singular point are either a local attractor, or a local repeller, or they have two invariant manifolds, one stable and the other unstable, which locally are formed by two 2-dimensional cylinders. These results are proved using averaging theory. The method of studying the Hopf bifurcation using the averaging theory is relatively general and can be applied to other 3- or n-dimensional differential systems.
Resumo:
In recent years quaternionic functions have been an intense and prosperous object of research, and important results were determined [1]-[6]. Some of these results are similar to well known cases in one complex variable, op. cit. [5], [6]. In this paper the hypercomplex expansion of a function in a power series as well as determination of a Liouville's type theorem have been investigated to the quaternionic functions. In this case, it is observed that the Liouville's type theorem is true for second order derivatives, which differs from its classical version. © 2011 Academic Publications, Ltd.
Resumo:
Riemann surfaces, cohomology and homology groups, Cartan's spinors and triality, octonionic projective geometry, are all well supported by Complex Structures [1], [2], [3], [4]. Furthermore, in Theoretical Physics, mainly in General Relativity, Supersymmetry and Particle Physics, Complex Theory Plays a Key Role [5], [6], [7], [8]. In this context it is expected that generalizations of concepts and main results from the Classical Complex Theory, like conformal and quasiconformal mappings [9], [10] in both quaternionic and octonionic algebra, may be useful for other fields of research, as for graphical computing enviromment [11]. In this Note, following recent works by the autors [12], [13], the Cauchy Theorem will be extended for Octonions in an analogous way that it has recentely been made for quaternions [14]. Finally, will be given an octonionic treatment of the wave equation, which means a wave produced by a hyper-string with initial conditions similar to the one-dimensional case.
Resumo:
The structural stability of vector fields with impasse regular curves on S2 is studied and a version of Peixoto's Theorem is established. Moreover a global analysis of normal forms of the constrained systems. A(x).ẋ=F(x),x∈R3,A∈M(3),F:R3→R3 in the Poincaré ball (i.e. in the compactification of R3 with the sphere S2 of the infinity) is made. © 2013 Elsevier Masson SAS.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A presente dissertação consta de estudos sobre deconvolução sísmica, onde buscamos otimizar desempenhos na operação de suavização, na resolução da estimativa da distribuição dos coeficientes de reflexão e na recuperação do pulso-fonte. Os filtros estudados são monocanais, e as formulações consideram o sismograma como o resultado de um processo estocástico estacionário, e onde demonstramos os efeitos de janelas e de descoloração. O principio aplicado é o da minimização da variância dos desvios entre o valor obtido e o desejado, resultando no sistema de equações normais Wiener-Hopf cuja solução é o vetor dos coeficientes do filtro para ser aplicado numa convolução. O filtro de deconvolução ao impulso é desenhado considerando a distribuição dos coeficientes de reflexão como uma série branca. O operador comprime bem os eventos sísmicos a impulsos, e o seu inverso é uma boa aproximação do pulso-fonte. O janelamento e a descoloração melhoram o resultado deste filtro. O filtro de deconvolução aos impulsos é desenhado utilizando a distribuição dos coeficientes de reflexão. As propriedades estatísticas da distribuição dos coeficientes de reflexão tem efeito no operador e em seu desempenho. Janela na autocorrelação degrada a saída, e a melhora é obtida quando ela é aplicada no operador deconvolucional. A transformada de Hilbert não segue o princípio dos mínimos-quadrados, e produz bons resultados na recuperação do pulso-fonte sob a premissa de fase-mínima. O inverso do pulso-fonte recuperado comprime bem os eventos sísmicos a impulsos. Quando o traço contém ruído aditivo, os resultados obtidos com auxilio da transformada de Hilbert são melhores do que os obtidos com o filtro de deconvolução ao impulso. O filtro de suavização suprime ruído presente no traço sísmico em função da magnitude do parâmetro de descoloração utilizado. A utilização dos traços suavizados melhora o desempenho da deconvolução ao impulso. A descoloração dupla gera melhores resultados do que a descoloração simples. O filtro casado é obtido através da maximização de uma função sinal/ruído. Os resultados obtidos na estimativa da distribuição dos coeficientes de reflexão com o filtro casado possuem melhor resolução do que o filtro de suavização.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this note we show that the roots of a polynomial are C∞ depend of the coefficients. The main tool to show this is the Implicit Function Theorem.
Resumo:
In this paper it is proved that hermitian forms over quaternion division algebras over local fields of characteristic two are classified by their dimension and discriminant.
Resumo:
In this paper, we prove that the full repressilator equations in dimension six undergo a supercritical Hopf bifurcation.
Resumo:
In this paper we introduce a type of Hypercomplex Fourier Series based on Quaternions, and discuss on a Hypercomplex version of the Square of the Error Theorem. Since their discovery by Hamilton (Sinegre [1]), quaternions have provided beautifully insights either on the structure of different areas of Mathematics or in the connections of Mathematics with other fields. For instance: I) Pauli spin matrices used in Physics can be easily explained through quaternions analysis (Lan [2]); II) Fundamental theorem of Algebra (Eilenberg [3]), which asserts that the polynomial analysis in quaternions maps into itself the four dimensional sphere of all real quaternions, with the point infinity added, and the degree of this map is n. Motivated on earlier works by two of us on Power Series (Pendeza et al. [4]), and in a recent paper on Liouville’s Theorem (Borges and Mar˜o [5]), we obtain an Hypercomplex version of the Fourier Series, which hopefully can be used for the treatment of hypergeometric partial differential equations such as the dumped harmonic oscillation.