881 resultados para Learning Bayesian Networks
Resumo:
The goal of this article was to study teachers' professional development related to web-based learning in the context of the teacher community. The object was to learn in what kind of networks teachers share the knowledge of web-based learning and what are the factors in the community that support or challenge teachers professional development of web-based learning. The findings of the study revealed that there are teachers who are especially active, called the central actors in this study, in the teacher community who collaborate and share knowledge of web-based learning. These central actors share both technical and pedagogical knowledge of web-based learning in networks that include both internal and external relations in the community and involve people, artefacts and a variety of media. Furthermore, the central actors appear to bridge different fields of teaching expertise in their community. According to the central actors' experiences the important factors that support teachers' professional development of web-based learning in the community are; the possibility to learn from colleagues and from everyday working practices, an emotionally safe atmosphere, the leader's personal support and community-level commitment. Also, the flexibility in work planning, challenging pupils, shared lessons with colleagues, training events in an authentic work environment and colleagues' professionalism are considered meaningful for professional development. As challenges, the knowledge sharing of web-based learning in the community needs mutual interests, transactive memory, time and facilities, peer support, a safe atmosphere and meaningful pedagogical practices. On the basis of the findings of the study it is suggested that by intensive collaboration related to web-based learning it may be possible to break the boundaries of individual teachership and create such sociocultural activities which support collaborative professional development in the teacher community. Teachers' in-service training programs should be more sensitive to the culture of teacher communities and teachers' reciprocal relations. Further, teacher trainers should design teachers' in-service training of web-based learning in co-evolution with supporting networks which include the media and artefacts as well as people.
Resumo:
The goal of this article was to study teachers' professional development related to web-based learning in the context of the teacher community. The object was to learn in what kind of networks teachers share the knowledge of web-based learning and what are the factors in the community that support or challenge teachers professional development of web-based learning. The findings of the study revealed that there are teachers who are especially active, called the central actors in this study, in the teacher community who collaborate and share knowledge of web-based learning. These central actors share both technical and pedagogical knowledge of web-based learning in networks that include both internal and external relations in the community and involve people, artefacts and a variety of media. Furthermore, the central actors appear to bridge different fields of teaching expertise in their community. According to the central actors' experiences the important factors that support teachers' professional development of web-based learning in the community are; the possibility to learn from colleagues and from everyday working practices, an emotionally safe atmosphere, the leader's personal support and community-level commitment. Also, the flexibility in work planning, challenging pupils, shared lessons with colleagues, training events in an authentic work environment and colleagues' professionalism are considered meaningful for professional development. As challenges, the knowledge sharing of web-based learning in the community needs mutual interests, transactive memory, time and facilities, peer support, a safe atmosphere and meaningful pedagogical practices. On the basis of the findings of the study it is suggested that by intensive collaboration related to web-based learning it may be possible to break the boundaries of individual teachership and create such sociocultural activities which support collaborative professional development in the teacher community. Teachers' in-service training programs should be more sensitive to the culture of teacher communities and teachers' reciprocal relations. Further, teacher trainers should design teachers' in-service training of web-based learning in co-evolution with supporting networks which include the media and artefacts as well as people.
Resumo:
The next generation of learners expect more informality in learning. Formal learning systems such as traditional LMS systems no longer meet the needs of a generation of learners used to Twitter and Facebook, social networking and user-generated content. Regardless of this, however, formal content and learning models are still important and play a major role in educating learners, particularly in enterprise. The eLite project at DERI addressed this emerging dichotomy of learning styles, reconciling the traditional with the avant garde by using innovative technology to add informal learning capabilities to formal learning architectures.
Resumo:
Web 2.0 und soziale Netzwerke gaben erste Impulse für neue Formen der Online-Lehre, welche die umfassende Vernetzung von Objekten und Nutzern im Internet nachhaltig einsetzen. Die Vielfältigkeit der unterschiedlichen Systeme erschwert aber deren ganzheitliche Nutzung in einem umfassenden Lernszenario, das den Anforderungen der modernen Informationsgesellschaft genügt. In diesem Beitrag wird eine auf dem Konnektivismus basierende Plattform für die Online-Lehre namens “Wiki-Learnia” präsentiert, welche alle wesentlichen Abschnitte des lebenslangen Lernens abbildet. Unter Einsatz zeitgemäßer Technologien werden nicht nur Nutzer untereinander verbunden, sondern auch Nutzer mit dedizierten Inhalten sowie ggf. zugehörigen Autoren und/oder Tutoren verknüpft. Für ersteres werden verschiedene Kommunikations-Werkzeuge des Web 2.0 (soziale Netzwerke, Chats, Foren etc.) eingesetzt. Letzteres fußt auf dem sogenannten “Learning-Hub”-Ansatz, welcher mit Hilfe von Web-3.0-Mechanismen insbesondere durch eine semantische Metasuchmaschine instrumentiert wird. Zum Aufzeigen der praktischen Relevanz des Ansatzes wird das mediengestützte Juniorstudium der Universität Rostock vorgestellt, ein Projekt, das Schüler der Abiturstufe aufs Studium vorbereitet. Anhand der speziellen Anforderungen dieses Vorhabens werden der enorme Funktionsumfang und die große Flexibilität von Wiki-Learnia demonstriert.
Resumo:
The success of combination antiretroviral therapy is limited by the evolutionary escape dynamics of HIV-1. We used Isotonic Conjunctive Bayesian Networks (I-CBNs), a class of probabilistic graphical models, to describe this process. We employed partial order constraints among viral resistance mutations, which give rise to a limited set of mutational pathways, and we modeled phenotypic drug resistance as monotonically increasing along any escape pathway. Using this model, the individualized genetic barrier (IGB) to each drug is derived as the probability of the virus not acquiring additional mutations that confer resistance. Drug-specific IGBs were combined to obtain the IGB to an entire regimen, which quantifies the virus' genetic potential for developing drug resistance under combination therapy. The IGB was tested as a predictor of therapeutic outcome using between 2,185 and 2,631 treatment change episodes of subtype B infected patients from the Swiss HIV Cohort Study Database, a large observational cohort. Using logistic regression, significant univariate predictors included most of the 18 drugs and single-drug IGBs, the IGB to the entire regimen, the expert rules-based genotypic susceptibility score (GSS), several individual mutations, and the peak viral load before treatment change. In the multivariate analysis, the only genotype-derived variables that remained significantly associated with virological success were GSS and, with 10-fold stronger association, IGB to regimen. When predicting suppression of viral load below 400 cps/ml, IGB outperformed GSS and also improved GSS-containing predictors significantly, but the difference was not significant for suppression below 50 cps/ml. Thus, the IGB to regimen is a novel data-derived predictor of treatment outcome that has potential to improve the interpretation of genotypic drug resistance tests.
Resumo:
User experience on watching live videos must be satisfactory even under the inuence of different network conditions and topology changes, such as happening in Flying Ad-Hoc Networks (FANETs). Routing services for video dissemination over FANETs must be able to adapt routing decisions at runtime to meet Quality of Experience (QoE) requirements. In this paper, we introduce an adaptive beaconless opportunistic routing protocol for video dissemination over FANETs with QoE support, by taking into account multiple types of context information, such as link quality, residual energy, buffer state, as well as geographic information and node mobility in a 3D space. The proposed protocol takes into account Bayesian networks to define weight vectors and Analytic Hierarchy Process (AHP) to adjust the degree of importance for the context information based on instantaneous values. It also includes a position prediction to monitor the distance between two nodes in order to detect possible route failure.
Resumo:
Background. Obesity is a major health problem throughout the industrialized world. Despite numerous attempts to curtail the rapid growth of obesity, its incidence continues to rise. Therefore, it is crucial to better understand the etiology of obesity beyond the concept of energy balance.^ Aims. The first aim of this study was to first investigate the relationship between eating behaviors and body size. The second goal was to identify genetic variation associated with eating behaviors. Thirdly, this study aimed to examine the joint relationships between eating behavior, body size and genetic variation.^ Methods. This study utilized baseline data ascertained in young adults from the Training Interventions and Genetics of Exercise (TIGER) Study. Variables assessed included eating behavior (Emotional Eating Scale, Eating Attitudes Test-26, and the Block98 Food Frequency Questionnaire), body size (body mass index, waist and hip circumference, waist/hip ratio, and percent body fat), genetic variation in genes implicated related to the hypothalamic control of energy balance, and appropriate covariates (age, gender, race/ethnicity, smoking status, and physical activity. For the genetic association analyses, genotypes were collapsed by minor allele frequency, and haplotypes were estimated for each gene. Additionally, Bayesian networks were constructed in order to determine the relationships between genetic variation, eating behavior and body size.^ Results. We report that the EAT-26 score, Caloric intake, percent fat, fiber intake, HEAT index, and daily servings of vegetables, meats, grains, and fats were significantly associated with at least one body size measure. Multiple SNPs in 17 genes and haplotypes from 12 genes were tested for their association with body size. Variation within both DRD4 and HTR2A was found to be associated with EAT-26 score. In addition, variation in the ghrelin gene (GHRL) was significantly associated with daily Caloric intake. A significant interaction between daily servings of grains and the HEAT index and variation within the leptin receptor gene (LEPR) was shown to influence body size.^ Conclusion. This study has shown that there is a substantial genetic component to eating behavior and that genetic variation interacts with eating behavior to influence body size.^
Resumo:
Existing models estimating oil spill costs at sea are based on data from the past, and they usually lack a systematic approach. This make them passive, and limits their ability to forecast the effect of the changes in the oil combating fleet or location of a spill on the oil spill costs. In this paper we make an attempt towards the development of a probabilistic and systematic model estimating the costs of clean-up operations for the Gulf of Finland. For this purpose we utilize expert knowledge along with the available data and information from literature. Then, the obtained information is combined into a framework with the use of a Bayesian Belief Networks. Due to lack of data, we validate the model by comparing its results with existing models, with which we found good agreement. We anticipate that the presented model can contribute to the cost-effective oil-combating fleet optimization for the Gulf of Finland. It can also facilitate the accident consequences estimation in the framework of formal safety assessment (FSA).
Resumo:
We present an evaluation of a spoken language dialogue system with a module for the management of userrelated information, stored as user preferences and privileges. The flexibility of our dialogue management approach, based on Bayesian Networks (BN), together with a contextual information module, which performs different strategies for handling such information, allows us to include user information as a new level into the Context Manager hierarchy. We propose a set of objective and subjective metrics to measure the relevance of the different contextual information sources. The analysis of our evaluation scenarios shows that the relevance of the short-term information (i.e. the system status) remains pretty stable throughout the dialogue, whereas the dialogue history and the user profile (i.e. the middle-term and the long-term information, respectively) play a complementary role, evolving their usefulness as the dialogue evolves.
Resumo:
Research in psychology has reported that, among the variety of possibilities for assessment methodologies, summary evaluation offers a particularly adequate context for inferring text comprehension and topic understanding. However, grades obtained in this methodology are hard to quantify objectively. Therefore, we carried out an empirical study to analyze the decisions underlying human summary-grading behavior. The task consisted of expert evaluation of summaries produced in critically relevant contexts of summarization development, and the resulting data were modeled by means of Bayesian networks using an application called Elvira, which allows for graphically observing the predictive power (if any) of the resultant variables. Thus, in this article, we analyzed summary-evaluation decision making in a computational framework
Resumo:
A lo largo de las últimas décadas el desarrollo de la tecnología en muy distintas áreas ha sido vertiginoso. Su propagación a todos los aspectos de nuestro día a día parece casi inevitable y la electrónica de consumo ha invadido nuestros hogares. No obstante, parece que la domótica no ha alcanzado el grado de integración que cabía esperar hace apenas una década. Es cierto que los dispositivos autónomos y con un cierto grado de inteligencia están abriéndose paso de manera independiente, pero el hogar digital, como sistema capaz de abarcar y automatizar grandes conjuntos de elementos de una vivienda (gestión energética, seguridad, bienestar, etc.) no ha conseguido extenderse al hogar medio. Esta falta de integración no se debe a la ausencia de tecnología, ni mucho menos, y numerosos son los estudios y proyectos surgidos en esta dirección. Sin embargo, no ha sido hasta hace unos pocos años que las instituciones y grandes compañías han comenzado a prestar verdadero interés en este campo. Parece que estamos a punto de experimentar un nuevo cambio en nuestra forma de vida, concretamente en la manera en la que interactuamos con nuestro hogar y las comodidades e información que este nos puede proporcionar. En esa corriente se desarrolla este Proyecto Fin de Grado, con el objetivo de aportar un nuevo enfoque a la manera de integrar los diferentes dispositivos del hogar digital con la inteligencia artificial y, lo que es más importante, al modo en el que el usuario interactúa con su vivienda. Más concretamente, se pretende desarrollar un sistema capaz de tomar decisiones acordes al contexto y a las preferencias del usuario. A través de la utilización de diferentes tecnologías se dotará al hogar digital de cierta autonomía a la hora de decidir qué acciones debe llevar a cabo sobre los dispositivos que contiene, todo ello mediante la interpretación de órdenes procedentes del usuario (expresadas de manera coloquial) y el estudio del contexto que envuelve al instante de ejecución. Para la interacción entre el usuario y el hogar digital se desarrollará una aplicación móvil mediante la cual podrá expresar (de manera conversacional) las órdenes que quiera dar al sistema, el cual intervendrá en la conversación y llevará a cabo las acciones oportunas. Para todo ello, el sistema hará principalmente uso de ontologías, análisis semántico, redes bayesianas, UPnP y Android. Se combinará información procedente del usuario, de los sensores y de fuentes externas para determinar, a través de las citadas tecnologías, cuál es la operación que debe realizarse para satisfacer las necesidades del usuario. En definitiva, el objetivo final de este proyecto es diseñar e implementar un sistema innovador que se salga de la corriente actual de interacción mediante botones, menús y formularios a los que estamos tan acostumbrados, y que permita al usuario, en cierto modo, hablar con su vivienda y expresarle sus necesidades, haciendo a la tecnología un poco más transparente y cercana y aproximándonos un poco más a ese concepto de hogar inteligente que imaginábamos a finales del siglo XX. ABSTRACT. Over the last decades the development of technology in very different areas has happened incredibly fast. Its propagation to all aspects of our daily activities seems to be inevitable and the electronic devices have invaded our homes. Nevertheless, home automation has not reached the integration point that it was supposed to just a few decades ago. It is true that some autonomic and relatively intelligent devices are emerging, but the digital home as a system able to control a large set of elements from a house (energy management, security, welfare, etc.) is not present yet in the average home. That lack of integration is not due to the absence of technology and, in fact, there are a lot of investigations and projects focused on this field. However, the institutions and big companies have not shown enough interest in home automation until just a few years ago. It seems that, finally, we are about to experiment another change in our lifestyle and how we interact with our home and the information and facilities it can provide. This Final Degree Project is developed as part of this trend, with the goal of providing a new approach to the way the system could integrate the home devices with the artificial intelligence and, mainly, to the way the user interacts with his house. More specifically, this project aims to develop a system able to make decisions, taking into account the context and the user preferences. Through the use of several technologies and approaches, the system will be able to decide which actions it should perform based on the order interpretation (expressed colloquially) and the context analysis. A mobile application will be developed to enable the user-home interaction. The user will be able to express his orders colloquially though out a conversational mode, and the system will also participate in the conversation, performing the required actions. For providing all this features, the system will mainly use ontologies, semantic analysis, Bayesian networks, UPnP and Android. Information from the user, the sensors and external sources will be combined to determine, through the use of these technologies, which is the operation that the system should perform to meet the needs of the user. In short, the final goal of this project is to design and implement an innovative system, away from the current trend of buttons, menus and forms. In a way, the user will be able to talk to his home and express his needs, experiencing a technology closer to the people and getting a little closer to that concept of digital home that we imagined in the late twentieth century.
Resumo:
El funcionamiento interno del cerebro es todavía hoy en día un misterio, siendo su comprensión uno de los principales desafíos a los que se enfrenta la ciencia moderna. El córtex cerebral es el área del cerebro donde tienen lugar los procesos cerebrales de más alto nivel, cómo la imaginación, el juicio o el pensamiento abstracto. Las neuronas piramidales, un tipo específico de neurona, suponen cerca del 80% de los cerca de los 10.000 millones de que componen el córtex cerebral, haciendo de ellas un objetivo principal en el estudio del funcionamiento del cerebro. La morfología neuronal, y más específicamente la morfología dendrítica, determina cómo estas procesan la información y los patrones de conexión entre neuronas, siendo los modelos computacionales herramientas imprescindibles para el estudio de su rol en el funcionamiento del cerebro. En este trabajo hemos creado un modelo computacional, con más de 50 variables relativas a la morfología dendrítica, capaz de simular el crecimiento de arborizaciones dendríticas basales completas a partir de reconstrucciones de neuronas piramidales reales, abarcando desde el número de dendritas hasta el crecimiento los los árboles dendríticos. A diferencia de los trabajos anteriores, nuestro modelo basado en redes Bayesianas contempla la arborización dendrítica en su conjunto, teniendo en cuenta las interacciones entre dendritas y detectando de forma automática las relaciones entre las variables morfológicas que caracterizan la arborización. Además, el análisis de las redes Bayesianas puede ayudar a identificar relaciones hasta ahora desconocidas entre variables morfológicas. Motivado por el estudio de la orientación de las dendritas basales, en este trabajo se introduce una regularización L1 generalizada, aplicada al aprendizaje de la distribución von Mises multivariante, una de las principales distribuciones de probabilidad direccional multivariante. También se propone una distancia circular multivariante que puede utilizarse para estimar la divergencia de Kullback-Leibler entre dos muestras de datos circulares. Comparamos los modelos con y sin regularizaci ón en el estudio de la orientación de la dendritas basales en neuronas humanas, comprobando que, en general, el modelo regularizado obtiene mejores resultados. El muestreo, ajuste y representación de la distribución von Mises multivariante se implementa en un nuevo paquete de R denominado mvCircular.---ABSTRACT---The inner workings of the brain are, as of today, a mystery. To understand the brain is one of the main challenges faced by current science. The cerebral cortex is the region of the brain where all superior brain processes, like imagination, judge and abstract reasoning take place. Pyramidal neurons, a specific type of neurons, constitute approximately the 80% of the more than 10.000 million neurons that compound the cerebral cortex. It makes the study of the pyramidal neurons crucial in order to understand how the brain works. Neuron morphology, and specifically the dendritic morphology, determines how the information is processed in the neurons, as well as the connection patterns among neurons. Computational models are one of the main tools for studying dendritic morphology and its role in the brain function. We have built a computational model that contains more than 50 morphological variables of the dendritic arborizations. This model is able to simulate the growth of complete dendritic arborizations from real neuron reconstructions, starting with the number of basal dendrites, and ending modeling the growth of dendritic trees. One of the main diferences between our approach, mainly based on the use of Bayesian networks, and other models in the state of the art is that we model the whole dendritic arborization instead of focusing on individual trees, which makes us able to take into account the interactions between dendrites and to automatically detect relationships between the morphologic variables that characterize the arborization. Moreover, the posterior analysis of the relationships in the model can help to identify new relations between morphological variables. Motivated by the study of the basal dendrites orientation, a generalized L1 regularization applied to the multivariate von Mises distribution, one of the most used distributions in multivariate directional statistics, is also introduced in this work. We also propose a circular multivariate distance that can be used to estimate the Kullback-Leibler divergence between two circular data samples. We compare the regularized and unregularized models on basal dendrites orientation of human neurons and prove that regularized model achieves better results than non regularized von Mises model. Sampling, fitting and plotting functions for the multivariate von Mises are implemented in a new R packaged called mvCircular.
Resumo:
El correcto pronóstico en el ámbito de la logística de transportes es de vital importancia para una adecuada planificación de medios y recursos, así como de su optimización. Hasta la fecha los estudios sobre planificación portuaria se basan principalmente en modelos empíricos; que se han utilizado para planificar nuevas terminales y desarrollar planes directores cuando no se dispone de datos iniciales, analíticos; más relacionados con la teoría de colas y tiempos de espera con formulaciones matemáticas complejas y necesitando simplificaciones de las mismas para hacer manejable y práctico el modelo o de simulación; que requieren de una inversión significativa como para poder obtener resultados aceptables invirtiendo en programas y desarrollos complejos. La Minería de Datos (MD) es un área moderna interdisciplinaria que engloba a aquellas técnicas que operan de forma automática (requieren de la mínima intervención humana) y, además, son eficientes para trabajar con las grandes cantidades de información disponible en las bases de datos de numerosos problemas prácticos. La aplicación práctica de estas disciplinas se extiende a numerosos ámbitos comerciales y de investigación en problemas de predicción, clasificación o diagnosis. Entre las diferentes técnicas disponibles en minería de datos las redes neuronales artificiales (RNA) y las redes probabilísticas o redes bayesianas (RB) permiten modelizar de forma conjunta toda la información relevante para un problema dado. En el presente trabajo se han analizado dos aplicaciones de estos casos al ámbito portuario y en concreto a contenedores. En la Tesis Doctoral se desarrollan las RNA como herramienta para obtener previsiones de tráfico y de recursos a futuro de diferentes puertos, a partir de variables de explotación, obteniéndose valores continuos. Para el caso de las redes bayesianas (RB), se realiza un trabajo similar que para el caso de las RNA, obteniéndose valores discretos (un intervalo). El principal resultado que se obtiene es la posibilidad de utilizar tanto las RNA como las RB para la estimación a futuro de parámetros físicos, así como la relación entre los mismos en una terminal para una correcta asignación de los medios a utilizar y por tanto aumentar la eficiencia productiva de la terminal. Como paso final se realiza un estudio de complementariedad de ambos modelos a corto plazo, donde se puede comprobar la buena aceptación de los resultados obtenidos. Por tanto, se puede concluir que estos métodos de predicción pueden ser de gran ayuda a la planificación portuaria. The correct assets’ forecast in the field of transportation logistics is a matter of vital importance for a suitable planning and optimization of the necessary means and resources. Up to this date, ports planning studies were basically using empirical models to deal with new terminals planning or master plans development when no initial data are available; analytical models, more connected to the queuing theory and the waiting times, and very complicated mathematical formulations requiring significant simplifications to acquire a practical and easy to handle model; or simulation models, that require a significant investment in computer codes and complex developments to produce acceptable results. The Data Mining (DM) is a modern interdisciplinary field that include those techniques that operate automatically (almost no human intervention is required) and are highly efficient when dealing with practical problems characterized by huge data bases containing significant amount of information. These disciplines’ practical application extends to many commercial or research fields, dealing with forecast, classification or diagnosis problems. Among the different techniques of the Data Mining, the Artificial Neuronal Networks (ANN) and the probabilistic – or Bayesian – networks (BN) allow the joint modeling of all the relevant information for a given problem. This PhD work analyses their application to two practical cases in the ports field, concretely to container terminals. This PhD work details how the ANN have been developed as a tool to produce traffic and resources forecasts for several ports, based on exploitation variables to obtain continuous values. For the Bayesian networks case (BN), a similar development has been carried out, obtaining discreet values (an interval). The main finding is the possibility to use ANN and BN to estimate future needs of the port’s or terminal’s physical parameters, as well as the relationship between them within a specific terminal, that allow a correct assignment of the necessary means and, thus, to increase the terminal’s productive efficiency. The final step is a short term complementarily study of both models, carried out in order to verify the obtained results. It can thus be stated that these prediction methods can be a very useful tool in ports’ planning.
Resumo:
La estructura económica mundial, con centros de producción y consumo descentralizados y el consiguiente aumento en el tráfico de mercancías en todo el mundo, crea considerables problemas y desafíos para el sector del transporte de mercancías. Esta situación ha llevado al transporte marítimo a convertirse en el modo más económico y más adecuado para el transporte de mercancías a nivel global. De este modo, los puertos marítimos se configuran como nodos de importancia capital en la cadena de suministro al servir como enlace entre dos sistemas de transporte, el marítimo y el terrestre. El aumento de la actividad en los puertos marítimos produce tres efectos indeseables: el aumento de la congestión vial, la falta de espacio abierto en las instalaciones portuarias y un impacto ambiental significativo en los puertos marítimos. Los puertos secos nacen para favorecer la utilización de cada modo de transporte en los segmentos en que resultan más competitivos y para mitigar estos problemas moviendo parte de la actividad en el interior. Además, gracias a la implantación de puertos secos es posible discretizar cada uno de los eslabones de la cadena de transporte, permitiendo que los modos más contaminantes y con menor capacidad de transporte tengan itinerarios lo más cortos posible, o bien, sean utilizados únicamente para el transporte de mercancías de alto valor añadido. Así, los puertos secos se presentan como una oportunidad para fortalecer las soluciones intermodales como parte de una cadena integrada de transporte sostenible, potenciando el transporte de mercancías por ferrocarril. Sin embargo, su potencial no es aprovechado al no existir una metodología de planificación de la ubicación de uso sencillo y resultados claros para la toma de decisiones a partir de los criterios ingenieriles definidos por los técnicos. La decisión de dónde ubicar un puerto seco exige un análisis exhaustivo de toda la cadena logística, con el objetivo de transferir el mayor volumen de tráfico posible a los modos más eficientes desde el punto de vista energético, que son menos perjudiciales para el medio ambiente. Sin embargo, esta decisión también debe garantizar la sostenibilidad de la propia localización. Esta Tesis Doctoral, pretende sentar las bases teóricas para el desarrollo de una herramienta de Herramienta de Ayuda a la Toma de Decisiones que permita establecer la localización más adecuada para la construcción de puertos secos. Este primer paso es el desarrollo de una metodología de evaluación de la sostenibilidad y la calidad de las localizaciones de los puertos secos actuales mediante el uso de las siguientes técnicas: Metodología DELPHI, Redes Bayesianas, Análisis Multicriterio y Sistemas de Información Geográfica. Reconociendo que la determinación de la ubicación más adecuada para situar diversos tipos de instalaciones es un importante problema geográfico, con significativas repercusiones medioambientales, sociales, económicos, locacionales y de accesibilidad territorial, se considera un conjunto de 40 variables (agrupadas en 17 factores y estos, a su vez, en 4 criterios) que permiten evaluar la sostenibilidad de las localizaciones. El Análisis Multicriterio se utiliza como forma de establecer una puntuación a través de un algoritmo de scoring. Este algoritmo se alimenta a través de: 1) unas calificaciones para cada variable extraídas de información geográfica analizada con ArcGIS (Criteria Assessment Score); 2) los pesos de los factores obtenidos a través de un cuestionario DELPHI, una técnica caracterizada por su capacidad para alcanzar consensos en un grupo de expertos de muy diferentes especialidades: logística, sostenibilidad, impacto ambiental, planificación de transportes y geografía; y 3) los pesos de las variables, para lo que se emplean las Redes Bayesianas lo que supone una importante aportación metodológica al tratarse de una novedosa aplicación de esta técnica. Los pesos se obtienen aprovechando la capacidad de clasificación de las Redes Bayesianas, en concreto de una red diseñada con un algoritmo de tipo greedy denominado K2 que permite priorizar cada variable en función de las relaciones que se establecen en el conjunto de variables. La principal ventaja del empleo de esta técnica es la reducción de la arbitrariedad en la fijación de los pesos de la cual suelen adolecer las técnicas de Análisis Multicriterio. Como caso de estudio, se evalúa la sostenibilidad de los 10 puertos secos existentes en España. Los resultados del cuestionario DELPHI revelan una mayor importancia a la hora de buscar la localización de un Puerto Seco en los aspectos tenidos en cuenta en las teorías clásicas de localización industrial, principalmente económicos y de accesibilidad. Sin embargo, no deben perderse de vista el resto de factores, cuestión que se pone de manifiesto a través del cuestionario, dado que ninguno de los factores tiene un peso tan pequeño como para ser despreciado. Por el contrario, los resultados de la aplicación de Redes Bayesianas, muestran una mayor importancia de las variables medioambientales, por lo que la sostenibilidad de las localizaciones exige un gran respeto por el medio natural y el medio urbano en que se encuadra. Por último, la aplicación práctica refleja que la localización de los puertos secos existentes en España en la actualidad presenta una calidad modesta, que parece responder más a decisiones políticas que a criterios técnicos. Por ello, deben emprenderse políticas encaminadas a generar un modelo logístico colaborativo-competitivo en el que se evalúen los diferentes factores tenidos en cuenta en esta investigación. The global economic structure, with its decentralized production and the consequent increase in freight traffic all over the world, creates considerable problems and challenges for the freight transport sector. This situation has led shipping to become the most suitable and cheapest way to transport goods. Thus, ports are configured as nodes with critical importance in the logistics supply chain as a link between two transport systems, sea and land. Increase in activity at seaports is producing three undesirable effects: increasing road congestion, lack of open space in port installations and a significant environmental impact on seaports. These adverse effects can be mitigated by moving part of the activity inland. Implementation of dry ports is a possible solution and would also provide an opportunity to strengthen intermodal solutions as part of an integrated and more sustainable transport chain, acting as a link between road and railway networks. In this sense, implementation of dry ports allows the separation of the links of the transport chain, thus facilitating the shortest possible routes for the lowest capacity and most polluting means of transport. Thus, the decision of where to locate a dry port demands a thorough analysis of the whole logistics supply chain, with the objective of transferring the largest volume of goods possible from road to more energy efficient means of transport, like rail or short-sea shipping, that are less harmful to the environment. However, the decision of where to locate a dry port must also ensure the sustainability of the site. Thus, the main goal of this dissertation is to research the variables influencing the sustainability of dry port location and how this sustainability can be evaluated. With this objective, in this research we present a methodology for assessing the sustainability of locations by the use of Multi-Criteria Decision Analysis (MCDA) and Bayesian Networks (BNs). MCDA is used as a way to establish a scoring, whilst BNs were chosen to eliminate arbitrariness in setting the weightings using a technique that allows us to prioritize each variable according to the relationships established in the set of variables. In order to determine the relationships between all the variables involved in the decision, giving us the importance of each factor and variable, we built a K2 BN algorithm. To obtain the scores of each variable, we used a complete cartography analysed by ArcGIS. Recognising that setting the most appropriate location to place a dry port is a geographical multidisciplinary problem, with significant economic, social and environmental implications, we consider 41 variables (grouped into 17 factors) which respond to this need. As a case of study, the sustainability of all of the 10 existing dry ports in Spain has been evaluated. In this set of logistics platforms, we found that the most important variables for achieving sustainability are those related to environmental protection, so the sustainability of the locations requires a great respect for the natural environment and the urban environment in which they are framed.
Resumo:
Esta tesis presenta el diseño y la aplicación de una metodología que permite la determinación de los parámetros para la planificación de nodos e infraestructuras logísticas en un territorio, considerando además el impacto de estas en los diferentes componentes territoriales, así como en el desarrollo poblacional, el desarrollo económico y el medio ambiente, presentando así un avance en la planificación integral del territorio. La Metodología propuesta está basada en Minería de Datos, que permite el descubrimiento de patrones detrás de grandes volúmenes de datos previamente procesados. Las características propias de los datos sobre el territorio y los componentes que lo conforman hacen de los estudios territoriales un campo ideal para la aplicación de algunas de las técnicas de Minería de Datos, tales como los ´arboles decisión y las redes bayesianas. Los árboles de decisión permiten representar y categorizar de forma esquemática una serie de variables de predicción que ayudan al análisis de una variable objetivo. Las redes bayesianas representan en un grafo acíclico dirigido, un modelo probabilístico de variables distribuidas en padres e hijos, y la inferencia estadística que permite determinar la probabilidad de certeza de una hipótesis planteada, es decir, permiten construir modelos de probabilidad conjunta que presentan de manera gráfica las dependencias relevantes en un conjunto de datos. Al igual que con los árboles de decisión, la división del territorio en diferentes unidades administrativas hace de las redes bayesianas una herramienta potencial para definir las características físicas de alguna tipología especifica de infraestructura logística tomando en consideración las características territoriales, poblacionales y económicas del área donde se plantea su desarrollo y las posibles sinergias que se puedan presentar sobre otros nodos e infraestructuras logísticas. El caso de estudio seleccionado para la aplicación de la metodología ha sido la República de Panamá, considerando que este país presenta algunas características singulares, entra las que destacan su alta concentración de población en la Ciudad de Panamá; que a su vez a concentrado la actividad económica del país; su alto porcentaje de zonas protegidas, lo que ha limitado la vertebración del territorio; y el Canal de Panamá y los puertos de contenedores adyacentes al mismo. La metodología se divide en tres fases principales: Fase 1: Determinación del escenario de trabajo 1. Revisión del estado del arte. 2. Determinación y obtención de las variables de estudio. Fase 2: Desarrollo del modelo de inteligencia artificial 3. Construcción de los ´arboles de decisión. 4. Construcción de las redes bayesianas. Fase 3: Conclusiones 5. Determinación de las conclusiones. Con relación al modelo de planificación aplicado al caso de estudio, una vez aplicada la metodología, se estableció un modelo compuesto por 47 variables que definen la planificación logística de Panamá, el resto de variables se definen a partir de estas, es decir, conocidas estas, el resto se definen a través de ellas. Este modelo de planificación establecido a través de la red bayesiana considera los aspectos de una planificación sostenible: económica, social y ambiental; que crean sinergia con la planificación de nodos e infraestructuras logísticas. The thesis presents the design and application of a methodology that allows the determination of parameters for the planning of nodes and logistics infrastructure in a territory, besides considering the impact of these different territorial components, as well as the population growth, economic and environmental development. The proposed methodology is based on Data Mining, which allows the discovery of patterns behind large volumes of previously processed data. The own characteristics of the territorial data makes of territorial studies an ideal field of knowledge for the implementation of some of the Data Mining techniques, such as Decision Trees and Bayesian Networks. Decision trees categorize schematically a series of predictor variables of an analyzed objective variable. Bayesian Networks represent a directed acyclic graph, a probabilistic model of variables divided in fathers and sons, and statistical inference that allow determine the probability of certainty in a hypothesis. The case of study for the application of the methodology is the Republic of Panama. This country has some unique features: a high population density in the Panama City, a concentration of economic activity, a high percentage of protected areas, and the Panama Canal. The methodology is divided into three main phases: Phase 1: definition of the work stage. 1. Review of the State of the art. 2. Determination of the variables. Phase 2: Development of artificial intelligence model 3. Construction of decision trees. 4. Construction of Bayesian Networks. Phase 3: conclusions 5. Determination of the conclusions. The application of the methodology to the case study established a model composed of 47 variables that define the logistics planning for Panama. This model of planning established through the Bayesian network considers aspects of sustainable planning and simulates the synergies between the nodes and logistical infrastructure planning.