871 resultados para Laying
Resumo:
The effects of the inclusion of raw glycerin (GLYC) and raw lecithin, in the diet (23 to 55 wk) on liver characteristics and various serum lipid fractions were studied in brown egg-laying hens at 55 wk of age. The control diets were based on corn, soybean meal, and 4% supplemental fat and contained 2,750 kcal AMEn/kg, 16.5% CP, and 0.73% digestible Lys. The diets were arranged as a 2 × 3 factorial with 2 levels of GLYC (0 and 7%) and 3 animal fat to lecithin ratios (4:0, 2:2, and 0:4%). Each treatment was replicated 8 times and the experimental unit was a cage with 10 hens. At 55 wk of age, 2 hens per cage replicate were randomly selected, weighed individually, and slaughtered by CO2 inhalation. Liver was immediately removed and weighed and the color recorded by spectrophotometry. In addition, blood samples from one bird per replicate were collected from the wing vein and the concentration of total cholesterol, low and high density lipoprotein cholesterol, and triglycerides were determined. The data were analyzed as a completely randomized design and the main effects of GLYC and lecithin content of the diet and the interactions were determined. No interactions between GLYC and lecithin content of the diets were detected for any of the variables studied. Liver characteristics and serum lipid traits were not affected by the inclusion of GLYC in the diet. The substitution of animal fat by lecithin, however, reduced the redness (a* 14.9 to 13.8) and yellowness (b* 8.60 to 7.20) values of the liver (P < 0.05) but did not affect the content of serum lipid fractions. It is concluded that the inclusion of GLYC and lecithin in the diet did not affect liver size or serum lipid fraction. However, the inclusion of lecithin reduced the a* and b* value of the liver
Resumo:
Many proximate factors determine a bird’s laying date, including environmental and social stimuli as well as individual responses to internal and external factors. However, the relative importance of these factors has not been experimentally demonstrated. Here we show that (i) large differences in the onset of first clutches between different populations result from variation in different responses to photoperiod and not from variation in responses to any other proximate factors and (ii) the same response mechanism causes maladaptive laying dates in habitats modified by humans. We present, to our knowledge, the first experimental demonstration that a single response mechanism is responsible for evolutionary adaptive intraspecific variation in a vertebrate life history trait.
Resumo:
Mating triggers behavioral and physiological changes in the Drosophila melanogaster female, including an elevation of egg laying. Seminal fluid molecules from the male accessory gland are responsible for initial behavioral changes, but persistence of these changes requires stored sperm. Using genetic analysis, we have identified a seminal fluid protein that is responsible for an initial elevation of egg laying. This molecule, Acp26Aa, has structural features of a prohormone and contains a region with amino acid similarity to the egg-laying hormone of Aplysia. Acp26Aa is transferred to the female during mating, where it undergoes processing. Here we report the generation and analysis of mutants, including a null, in Acp26Aa. Females mated to male flies that lack Acp26Aa lay fewer eggs than do mates of normal males. This effect is apparent only on the first day after mating. The null mutation has no other detectable physiological or behavioral effects on the male or the mated female.