610 resultados para Lavigne
Resumo:
Precise measurements were conducted in continuous flow seawater mesocosms located in full sunlight that compared metabolic response of coral, coral-macroalgae and macroalgae systems over a diurnal cycle. Irradiance controlled net photosynthesis (Pnet), which in turn drove net calcification (Gnet), and altered pH. Pnet exerted the dominant control on [CO3]2- and aragonite saturation state (Omega arag) over the diel cycle. Dark calcification rate decreased after sunset, reaching zero near midnight followed by an increasing rate that peaked at 03:00 h. Changes in Omega arag and pH lagged behind Gnet throughout the daily cycle by two or more hours. The flux rate Pnet was the primary driver of calcification. Daytime coral metabolism rapidly removes dissolved inorganic carbon (DIC) from the bulk seawater and photosynthesis provides the energy that drives Gnet while increasing the bulk water pH. These relationships result in a correlation between Gnet and Omega arag, with Omega arag as the dependent variable. High rates of H+ efflux continued for several hours following mid-day peak Gnet suggesting that corals have difficulty in shedding waste protons as described by the Proton Flux Hypothesis. DIC flux (uptake) followed Pnet and Gnet and dropped off rapidly following peak Pnet and peak Gnet indicating that corals can cope more effectively with the problem of limited DIC supply compared to the problem of eliminating H+. Over a 24 h period the plot of total alkalinity (AT) versus DIC as well as the plot of Gnet versus Omega arag revealed a circular hysteresis pattern over the diel cycle in the coral and coral-algae mesocosms, but not the macroalgae mesocosm. Presence of macroalgae did not change Gnet of the corals, but altered the relationship between Omega arag and Gnet. Predictive models of how future global changes will effect coral growth that are based on oceanic Omega arag must include the influence of future localized Pnet on Gnet and changes in rate of reef carbonate dissolution. The correlation between Omega arag and Gnet over the diel cycle is simply the response of the CO2-carbonate system to increased pH as photosynthesis shifts the equilibria and increases the [CO3]2- relative to the other DIC components of [HCO3]- and [CO2]. Therefore Omega arag closely tracked pH as an effect of changes in Pnet, which also drove changes in Gnet. Measurements of DIC flux and H+ flux are far more useful than concentrations in describing coral metabolism dynamics. Coral reefs are systems that exist in constant disequilibrium with the water column.
Seawater carbonate chemistry and toxicity of Pseudo-nitzschia fraudulenta in a laboratory experiment
Resumo:
Anthropogenic CO2 is progressively acidifying the ocean, but the responses of harmful algal bloom species that produce toxins that can bioaccumulate remain virtually unknown. The neurotoxin domoic acid is produced by the globally-distributed diatom genus Pseudo-nitzschia. This toxin is responsible for amnesic shellfish poisoning, which can result in illness or death in humans and regularly causes mass mortalities of marine mammals and birds. Domoic acid production by Pseudo-nitzschia cells is known to be regulated by nutrient availability, but potential interactions with increasing seawater CO2 concentrations are poorly understood. Here we present experiments measuring domoic acid production by acclimatized cultures of Pseudo-nitzschia fraudulenta that demonstrate a strong synergism between projected future CO2 levels (765 ppm) and silicate-limited growth, which greatly increases cellular toxicity relative to growth under modern atmospheric (360 ppm) or pre-industrial (200 ppm) CO2 conditions. Cellular Si:C ratios decrease with increasing CO2, in a trend opposite to that seen for domoic acid production. The coastal California upwelling system where this species was isolated currently exhibits rapidly increasing levels of anthropogenic acidification, as well as widespread episodic silicate limitation of diatom growth. Our results suggest that the current ecosystem and human health impacts of toxic Pseudo-nitzschia blooms could be greatly exacerbated by future ocean acidification and 'carbon fertilization' of the coastal ocean.
Resumo:
Efforts to evaluate the response of coral larvae to global climate change (GCC) and ocean acidification (OA) typically employ short experiments of fixed length, yet it is unknown how the response is affected by exposure duration. In this study, we exposed larvae from the brooding coral Pocillopora damicornis to contrasts of temperature (24.00 °C [ambient] versus 30.49 °C) and pCO2 (49.4 Pa versus 86.2 Pa) for varying periods (1-5 days) to test the hypothesis that exposure duration had no effect on larval response as assessed by protein content, respiration, Symbiodinium density, and survivorship; exposure times were ecologically relevant compared to representative pelagic larval durations (PLD) for corals. Larvae differed among days for all response variables, and the effects of the treatment were relatively consistent regardless of exposure duration for three of the four response variables. Protein content and Symbiodinium density were unaffected by temperature and pCO2, but respiration increased with temperature (but not pCO2) with the effect intensifying as incubations lengthened. Survival, however, differed significantly among treatments at the end of the study, and by the 5th day, 78% of the larvae were alive and swimming under ambient temperature and ambient pCO2, but only 55-59% were alive in the other treatments. These results demonstrate that the physiological effects of temperature and pCO2 on coral larvae can reliably be detected within days, but effects on survival require > or = 5 days to detect. The detection of time-dependent effects on larval survivorship suggests that the influence of GCC and OA will be stronger for corals having long PLDs.
Resumo:
We tested the effects of pCO2 on Seriatopora caliendrum recruits over the first 5.3 d of post-settlement existence. In March 2011, 11-20 larvae were settled in glass vials (3.2 mL) and incubated at 24.0 °C and ~250 µmol quanta/m**2/s while supplied with seawater (at 1.4 mL/s) equilibrated with 51.6 Pa pCO2 (ambient) or 86.4 Pa pCO2. At 51.6 Pa pCO2, mean respiration 7 h post-settlement was 0.056 ± 0.007 nmol O2/recruit/min, but rose quickly to 0.095 ± 0.007 nmol O2/recruit/min at 3.3 d post-settlement, and thereafter declined to 0.075 ± 0.002 nmol O2/recruit/min at 5.3 d post-settlement (all ± SE). Elevated pCO2 depressed respiration of recruits by 19% after 3.3 d and 12% overall (i.e., integrated over 5.3 d), and while it had no effect on corallite area, elevated pCO2 was associated with weaker adhesion to the glass settlement surface and lower protein biomass. The unique costs of settlement and metamorphosis for S. caliendrum over 5.3 d are estimated to be 257 mJ/recruit at 51.6 Pa pCO2, which is less than the energy content of the larvae and recruits.
Resumo:
Most calcifying organisms show depressed metabolic, growth and calcification rates as symptoms to high-CO(2) due to ocean acidification (OA) process. Analysis of the global expression pattern of proteins (proteome analysis) represents a powerful tool to examine these physiological symptoms at molecular level, but its applications are inadequate. To address this knowledge gap, 2-DE coupled with mass spectrophotometer was used to compare the global protein expression pattern of oyster larvae exposed to ambient and to high-CO(2). Exposure to OA resulted in marked reduction of global protein expression with a decrease or loss of 71 proteins (18% of the expressed proteins in control), indicating a wide-spread depression of metabolic genes expression in larvae reared under OA. This is, to our knowledge, the first proteome analysis that provides insights into the link between physiological suppression and protein down-regulation under OA in oyster larvae.
Resumo:
Ocean warming and ocean acidification, both consequences of anthropogenic production of CO2, will combine to influence the physiological performance of many species in the marine environment. In this study, we used an integrative approach to forecast the impact of future ocean conditions on larval purple sea urchins (Strongylocentrotus purpuratus) from the northeast Pacific Ocean. In laboratory experiments that simulated ocean warming and ocean acidification, we examined larval development, skeletal growth, metabolism and patterns of gene expression using an orthogonal comparison of two temperature (13°C and 18°C) and pCO2 (400 and 1100 µatm) conditions. Simultaneous exposure to increased temperature and pCO2 significantly reduced larval metabolism and triggered a widespread downregulation of histone encoding genes. pCO2 but not temperature impaired skeletal growth and reduced the expression of a major spicule matrix protein, suggesting that skeletal growth will not be further inhibited by ocean warming. Importantly, shifts in skeletal growth were not associated with developmental delay. Collectively, our results indicate that global change variables will have additive effects that exceed thresholds for optimized physiological performance in this keystone marine species.
Seawater carbonate chemistry and benthic foraminiferal assemblage counts from the Gulf of California
Resumo:
Increased CO2 and associated acidification in seawater, known as ocean acidification, decreases calcification of most marine calcifying organisms. However, there is little information available on how marine macroalgae would respond to the chemical changes caused by seawater acidification. We hypothesized that down-regulation of bicarbonate acquisition by algae under increased acidity and CO2 levels would lower the threshold above which photosynthetically active radiation (PAR) becomes excessive. Juveniles of Ulva prolifera derived from zoospores were grown at ambient (390 µatm) and elevated (1000 µatm) CO2 concentrations for 80 days before the hypothesis was tested. Here, the CO2-induced seawater acidification increased the quantum yield under low levels of light, but induced higher nonphotochemical quenching under high light. At the same time, the PAR level at which photosynthesis became saturated was decreased and the photosynthetic affinity for CO2 or inorganic carbon decreased in the high-CO2 grown plants. These findings indicated that ocean acidification, as an environmental stressor, can reduce the threshold above which PAR becomes excessive.
Resumo:
Acidification of the oceans by increasing anthropogenic CO2 emissions will cause a decrease in biogenic calcification and an increase in carbonate dissolution. Previous studies have suggested that carbonate dissolution will occur in polar regions and in the deep sea where saturation state with respect to carbonate minerals (Omega) will be <1 by 2100. Recent reports demonstrate nocturnal carbonate dissolution of reefs, despite a Omega a (aragonite saturation state) value of >1. This is probably related to the dissolution of reef carbonate (Mg-calcite), which is more soluble than aragonite. However, the threshold of Omega for the dissolution of natural sediments has not been clearly determined. We designed an experimental dissolution system with conditions mimicking those of a natural coral reef, and measured the dissolution rates of aragonite in corals, and of Mg-calcite excreted by other marine organisms, under conditions of Omega a > 1, with controlled seawater pCO2. The experimental data show that dissolution of bulk carbonate sediments sampled from a coral reef occurs at Omega a values of 3.7 to 3.8. Mg-calcite derived from foraminifera and coralline algae dissolves at Omega a values between 3.0 and 3.2, and coralline aragonite starts to dissolve when Omega a = 1.0. We show that nocturnal carbonate dissolution of coral reefs occurs mainly by the dissolution of foraminiferans and coralline algae in reef sediments.
Resumo:
Rising anthropogenic carbon dioxide (CO2) dissolving into coastal waters is decreasing the pH and carbonate ion concentration, thereby lowering the saturation state of calcium carbonate (CaCO3) minerals through a process named ocean acidification (OA). The unprecedented threats posed by such low pH on calcifying larvae of several edible oyster species have not yet been fully explored. Effects of low pH (7.9, 7.6, 7.4) on the early growth phase of Portuguese oyster (Crassostrea angulata) veliger larvae was examined at ambient salinity (34 ppt) and the low-salinity (27 ppt) treatment. Additionally, the combined effect of pH (8.1, 7.6), salinity (24 and 34 ppt) and temperature (24 °C and 30 °C) was examined using factorial experimental design. Surprisingly, the early growth phase from hatching to 5-day-old veliger stage showed high tolerance to pH 7.9 and pH 7.6 at both 34 ppt and 27 ppt. Larval shell area was significantly smaller at pH 7.4 only in low-salinity. In the 3-factor experiment, shell area was affected by salinity and the interaction between salinity and temperature but not by other combinations. Larvae produced the largest shell at the elevated temperature in low-salinity, regardless of pH. Thus the growth of the Portuguese oyster larvae appears to be robust to near-future pH level (> 7.6) when combined with projected elevated temperature and low-salinity in the coastal aquaculture zones of South China Sea.
Resumo:
Land-based aquaculture facilities often utilize additional bicarbonate sources such as commercial sea salts that are designed to boost alkalinity in order to buffer seawater against reductions in pH. Despite these preventative measures, many facilities are likely to face occasional reductions in pH and corresponding reductions in carbonate saturation states due to the accumulation of metabolic waste products. We investigated the impact of reduced carbonate saturation states (Omega Ca, Omega Ar) on embryonic developmental rates, larval developmental rates, and echinoplutei skeletal morphometrics in the common edible sea urchin Lytechinus variegatus under high alkalinity conditions. Commercial artificial seawater was bubbled with a mixture of air and CO2 gas to reduce the carbonate saturation state. Rates of embryonic and larval development were significantly delayed in both the low and extreme low carbonate saturation state groups relative to the control at a given time. Although symmetry of overall skeletal body lengths was not affected, allometric relationships were significantly different between treatment groups. Larvae reared under ambient conditions had significantly greater postoral arm and overall body lengths relative to body lengths than larvae grown under extreme low carbonate saturation state conditions, indicating that extreme changes in the carbonate system affected not only developmental rates but also larval skeletal shape. Reduced rates of embryonic development and delayed and altered larval skeletal growth are likely to negatively impact larval culturing of L. variegatus in land-based, intensive culture situations where calcite and aragonite saturation states are lowered by the accumulation of metabolic waste products.
Resumo:
Coralline algae are considered among the most sensitive species to near future ocean acidification. We tested the effects of elevated pCO2 on the metabolism of the free-living coralline alga Lithothamnion corallioides ("maerl") and the interactions with changes in temperature. Specimens were collected in North Brittany (France) and grown for 3 months at pCO2 of 380 (ambient pCO2), 550, 750, and 1000 µatm (elevated pCO2) and at successive temperatures of 10°C (ambient temperature in winter), 16°C (ambient temperature in summer), and 19°C (ambient temperature in summer +3°C). At each temperature, gross primary production, respiration (oxygen flux), and calcification (alkalinity flux) rates were assessed in the light and dark. Pigments were determined by HPLC. Chl a, carotene, and zeaxanthin were the three major pigments found in L. corallioides thalli. Elevated pCO2 did not affect pigment content while temperature slightly decreased zeaxanthin and carotene content at 10°C. Gross production was not affected by temperature but was significantly affected by pCO2 with an increase between 380 and 550 µatm. Light, dark, and diel (24 h) calcification rates strongly decreased with increasing pCO2 regardless of the temperature. Although elevated pCO2 only slightly affected gross production in L. corallioides, diel net calcification was reduced by up to 80% under the 1,000 µatm treatment. Our findings suggested that near future levels of CO2 will have profound consequences for carbon and carbonate budgets in rhodolith beds and for the sustainability of these habitats.
Resumo:
The world's oceans are warming and becoming more acidic. Both stressors, singly or in combination, impact marine species, and ensuing effects might be particularly serious for early life stages. To date most studies have focused on ocean acidification (OA) effects in fully marine environments, while little attention has been devoted to more variable coastal ecosystems, such as the Western Baltic Sea. Since natural spatial and temporal variability of environmental conditions such as salinity, temperature or pCO2 impose more complex stresses upon organisms inhabiting these habitats, species can be expected to be more tolerant to OA (or warming) than fully marine taxa. We present data on the variability of salinity, temperature and pH within the Kiel Fjord and on the responses of the barnacle Amphibalanus improvisus from this habitat to simulated warming and OA during its early development. Nauplii and cyprids were exposed to different temperature (12, 20 and 27°C) and pCO2 (nominally 400, 1250 and 3250 µatm) treatments for 8 and 4 weeks, respectively. Survival, larval duration and settlement success were monitored. Warming affected larval responses more strongly than OA. Increased temperatures favored survival and development of nauplii but decreased survival of cyprids. OA had no effect upon survival of nauplii but enhanced their development at low (12°C) and high (27°C) temperatures. In contrast, at the intermediate temperature (20°C), nauplii were not affected even by 3250 µatm pCO2. None of the treatments significantly affected settlement success of cyprids. These experiments show a remarkable tolerance of A. improvisus larvae to 1250 µatm pCO2, the level of OA predicted for the end of the century.
Resumo:
We tested the effect of near-future CO2 levels (= 490, 570, 700, and 960 µatm CO2) on the olfactory responses and activity levels of juvenile coral trout, Plectropomus leopardus, a piscivorous reef fish that is also one of the most important fisheries species on the Great Barrier Reef, Australia. Juvenile coral trout reared for 4 weeks at 570 µatm CO2 exhibited similar sensory responses and behaviors to juveniles reared at 490 µatm CO2 (control). In contrast, juveniles reared at 700 and 960 µatm CO2 exhibited dramatically altered sensory function and behaviors. At these higher CO2 concentrations, juveniles became attracted to the odor of potential predators, as has been observed in other reef fishes. They were more active, spent less time in shelter, ventured further from shelter, and were bolder than fish reared at 490 or 570 µatm CO2. These results demonstrate that behavioral impairment of coral trout is unlikely if pCO2 remains below 600 µatm; however, at higher levels, there are significant impacts on juvenile performance that are likely to affect survival and energy budgets, with consequences for predator-prey interactions and commercial fisheries.
Resumo:
Due to their low metabolism and apparent poor ion regulation ability, sea urchins could be particularly sensitive to ocean acidification resulting from increased dissolution of atmospheric carbon dioxide. Therefore, we evaluated the acid-base regulation ability of the coral reef sea urchin Echinometra mathaei and the impact of decreased pH on its growth and respiration activity. The study was conducted in two identical artificial reef mesocosms during seven weeks. Experimental tanks were maintained respectively at mean pHT 7.7 and 8.05 (with field-like night and day variations). The major physico-chemical parameters were identical, only pCO2 and pHT differed. Results indicate that E. mathaei can regulate the pH of its coelomic fluid in the considered range of pH, allowing a sustainable growth and ensuring an unaffected respiratory metabolism, at least at short term.