979 resultados para Lateral pterygoid muscle


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The LiteSteel Beam (LSB) is a new hollow flange channel section developed by OneSteel Australian Tube Mills using its patented dual electric resistance welding and automated continuous roll-forming technologies. The LSB has a unique geometry consisting of torsionally rigid rectangular hollow flanges and a relatively slender web. Its flexural strength for intermediate spans is governed by lateral distortional buckling characterised by simultaneous lateral deflection, twist and web distortion. Recent research on LSBs has mainly focussed on their lateral distortional buckling behaviour under uniform moment conditions. However, in practice, LSB flexural members are subjected to non-uniform moment distributions and load height effects as they are often under transverse loads applied above or below their shear centre. These loading conditions are known to have significant effects on the lateral buckling strength of beams. Many steel design codes have adopted equivalent uniform moment distribution and load height factors based on data for conventional hot-rolled, doubly symmetric I-beams subject to lateral torsional buckling. The non-uniform moment distribution and load height effects of transverse loading on cantilever LSBs, and the suitability of the current design modification factors to include such effects are not known. This paper presents a numerical study based on finite element analyses of the elastic lateral buckling strength of cantilever LSBs subject to transverse loading, and the results. The applicability of the design modification factors from various steel design codes was reviewed, and suitable recommendations are presented for cantilever LSBs subject to transverse loading.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of cold-formed steel members as structural columns and beams in residential, industrial and commercial buildings has increased significantly in recent times. This study is focused on the use of cold-formed steel sections as flexural members subject to lateral-torsional buckling. For this purpose a finite element model of a simply supported lipped channel beam under uniform bending was developed, validated using available numerical and experimental results, and used in a detailed parametric study. The moment capacity results were then compared with the predictions from the current ambient temperature design rules in the cold-formed steel structures codes of Australia, New Zealand, North America and Europe. European design rules were found to be conservative while Australian and American design rules were unsafe. This paper presents the results of the numerical study, the comparison with the current design rules and the new proposed design rules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract: This paper presents the details of a study into the behaviour and moment capacities of cold-formed steel lipped channel beams (LCB) subject to lateral-torsional buckling at elevated temperatures. It was based on a validated numerical model of a simply supported and laterally unrestrained LCB subjected to a uniform moment. The ultimate moment capacities from this study were compared with the predicted values using ambient and fire design methods. This study showed that the lateral torsional buckling capacity is strongly influenced by the level of non-linearity in the stress-strain curves of steel at elevated temperatures. Hence most of the current design methods based on a single buckling curve were not adequate to determine the moment capacities. This paper proposes a new design method for the cold-formed steel LCBs subject lateral-torsional buckling at elevated temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to investigate the effects of whole-body cryotherapy (WBC) on proprioceptive function, muscle force recovery following eccentric muscle contractions and tympanic temperature (TTY). Thirty-six subjects were randomly assigned to a group receiving two 3-min treatments of −110 ± 3 °C or 15 ± 3 °C. Knee joint position sense (JPS), maximal voluntary isometric contraction (MVIC) of the knee extensors, force proprioception and TTY were recorded before, immediately after the exposure and again 15 min later. A convenience sample of 18 subjects also underwent an eccentric exercise protocol on their contralateral left leg 24 h before exposure. MVIC (left knee), peak power output (PPO) during a repeated sprint on a cycle ergometer and muscles soreness were measured pre-, 24, 48 and 72 h post-treatment. WBC reduced TTY, by 0.3 °C, when compared with the control group (P<0.001). However, JPS, MVIC or force proprioception was not affected. Similarly, WBC did not effect MVIC, PPO or muscle soreness following eccentric exercise. WBC, administered 24 h after eccentric exercise, is ineffective in alleviating muscle soreness or enhancing muscle force recovery. The results of this study also indicate no increased risk of proprioceptive-related injury following WBC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study evaluated the effect of eye muscle area (EMA), ossification, carcass weight, marbling and rib fat depth on the incidence of dark cutting (pH u > 5.7) using routinely collected Meat Standards Australia (MSA) data. Data was obtained from 204,072 carcasses at a Western Australian processor between 2002 and 2008. Binomial data of pH u compliance was analysed using a logit model in a Bayesian framework. Increasing eye muscle area from 40 to 80 cm 2, increased pH u compliance by around 14% (P < 0.001) in carcasses less than 350 kg. As carcass weight increased from 150 kg to 220 kg, compliance increased by 13% (P < 0.001) and younger cattle with lower ossification were also 7% more compliant (P < 0.001). As rib fat depth increased from 0 to 20 mm, pH u compliance increased by around 10% (P < 0.001) yet marbling had no effect on dark cutting. Increasing musculature and growth combined with good nutrition will minimise dark cutting beef in Australia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Daring human nature has already led to the construction of high-rise buildings in naturally challenging geological regions and in worse environments of the world. However; literature review divulges that there is a lag in research of certain generic principles and rules for the prediction of lateral movement in multistorey construction. The present competitive trend orders the best possible used of available construction material and resources. Hence; the mixed used of reinforced concrete with structural steel is gaining prevalence day by day. This paper investigates the effects of Seismic load on composite multistorey building provided with core wall and trusses through FEM modelling. The results showed that increased rigidity corresponds to lower period of vibration and hence higher seismic forces. Since Seismic action is a function of mass and response acceleration, therefore; mass increment generate higher earthquake load and thus cause higher impact base shear and overturning movement. Whereas; wind force depends on building exposed, larger the plan dimension greater is the wind impact. Nonetheless; outriggers trusses noticeably contribute, in improving the serviceability of structure subjected to wind and earthquake forces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To assess the relationship between Bayesian MUNE and histological motor neuron counts in wild-type mice and in an animal model of ALS. Methods: We performed Bayesian MUNE paired with histological counts of motor neurons in the lumbar spinal cord of wild-type mice and transgenic SOD1 G93A mice that show progressive weakness over time. We evaluated the number of acetylcholine endplates that were innervated by a presynaptic nerve. Results: In wild-type mice, the motor unit number in the gastrocnemius muscle estimated by Bayesian MUNE was approximately half the number of motor neurons in the region of the spinal cord that contains the cell bodies of the motor neurons supplying the hindlimb crural flexor muscles. In SOD1 G93A mice, motor neuron numbers declined over time. This was associated with motor endplate denervation at the end-stage of disease. Conclusion: The number of motor neurons in the spinal cord of wild-type mice is proportional to the number of motor units estimated by Bayesian MUNE. In SOD1 G93A mice, there is a lower number of estimated motor units compared to the number of spinal cord motor neurons at the end-stage of disease, and this is associated with disruption of the neuromuscular junction. Significance: Our finding that the Bayesian MUNE method gives estimates of motor unit numbers that are proportional to the numbers of motor neurons in the spinal cord supports the clinical use of Bayesian MUNE in monitoring motor unit loss in ALS patients. © 2012 International Federation of Clinical Neurophysiology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exercise-induced muscle damage is an important topic in exercise physiology. However several aspects of our understanding of how muscles respond to highly stressful exercise remain unclear In the first section of this review we address the evidence that exercise can cause muscle damage and inflammation in otherwise healthy human skeletal muscles. We approach this concept by comparing changes in muscle function (i.e., the force-generating capacity) with the degree of leucocyte accumulation in muscle following exercise. In the second section, we explore the cytokine response to 'muscle-damaging exercise', primarily eccentric exercise. We review the evidence for the notion that the degree of muscle damage is related to the magnitude of the cytokine response. In the third and final section, we look at the satellite cell response to a single bout of eccentric exercise, as well as the role of the cyclooxygenase enzymes (COX1 and 2). In summary, we propose that muscle damage as evaluated by changes in muscle function is related to leucocyte accumulation in the exercised muscles. 'Extreme' exercise protocols, encompassing unaccustomed maximal eccentric exercise across a large range of motion, generally inflict severe muscle damage, inflammation and prolonged recovery (> 1 week). By contrast, exercise resembling regular athletic training (resistance exercise and downhill running) typically causes mild muscle damage (myofibrillar disruptions) and full recovery normally occurs within a few days. Large variation in individual responses to a given exercise should, however be expected. The link between cytokine and satellite cell responses and exercise-induced muscle damage is not so clear The systemic cytokine response may be linked more closely to the metabolic demands of exercise rather than muscle damage. With the exception of IL-6, the sources of systemic cytokines following exercise remain unclear The satellite cell response to severe muscle damage is related to regeneration, whereas the biological significance of satellite cell proliferation after mild damage or non-damaging exercise remains uncertain. The COX enzymes regulate satellite cell activity, as demonstrated in animal models; however the roles of the COX enzymes in human skeletal muscle need further investigation. We suggest using the term 'muscle damage' with care. Comparisons between studies and individuals must consider changes in and recovery of muscle force-generating capacity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exercise offers the potential to improve circulation, wound healing outcomes, and functional and emotional wellbeing for adults experiencing venous leg ulceration. Individuals with chronic leg ulcers typically have multiple comorbidities such as arthritis, asthma, chronic obstructive airways disease, cardiac disease or neuromuscular disorders, which would also benefit from regular exercise. The aim of this review is to highlight the relationships between the calf muscle pump and venous return and range of ankle motion for adults with venous leg ulcers. The effect of exercise will also be considered in relation to the healing rates for adults experiencing venous leg ulceration. The findings suggest there is evidence that exercises which engage the calf muscle pump improve venous return. Ankle range of motion, which is crucial for complete activation of the calf muscle pump, can also be improved with simple, home-based exercise programs. However, observational studies still report that venous leg ulcer patients are less physically active than age-matched controls. Therefore, the behavioural reasons for not exercising must be considered. Only two studies, both underpowered, have assessed the effect of exercise on the healing rates of venous leg ulcers. In conclusion, exercise is feasible with this patient population. However, future studies with larger sample sizes are needed to provide stronger evidence to support the therapeutic benefit of exercise as an adjunct therapy in wound care.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: Exercise increases the production of reactive oxygen species (ROS) in skeletal muscle, and athletes often consume antioxidant supplements in the belief they will attenuate ROS-related muscle damage and fatigue during exercise. However, exercise-induced ROS may regulate beneficial skeletal muscle adaptations, such as increased mitochondrial biogenesis. We therefore investigated the effects of long-term antioxidant supplementation with vitamin E and alpha-lipoic acid on changes in markers of mitochondrial biogenesis in the skeletal muscle of exercise-trained and sedentary rats. Methods: Male Wistar rats were divided into four groups: 1) sedentary control diet, 2) sedentary antioxidant diet, 3) exercise control diet, and 4) exercise antioxidant diet. Animals ran on a treadmill 4 d.wk(-1) at similar to 70% V (over dot)O(2max) for up to 90 min.d(-1) for 14 wk. Results: Consistent with the augmentation of skeletal muscle mitochondrial biogenesis and antioxidant defenses, after training there were significant increases in peroxisome proliferator-activated receptor F coactivator 1 alpha (PGC-1 alpha) messenger RNA (mRNA) and protein, cytochrome C oxidase subunit IV (COX IV) and cytochrome C protein abundance, citrate synthase activity, Nfe2l2, and SOD2 protein (P < 0.05). Antioxidant supplementation reduced PGC-1 alpha mRNA, PGC-1 alpha and COX IV protein, and citrate synthase enzyme activity (P < 0.05) in both sedentary and exercise-trained rats. Conclusions: Vitamin E and alpha-lipoic acid supplementation suppresses skeletal muscle mitochondrial biogenesis, regardless of training status.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aging and its effects on inflammation in skeletal muscle at rest and following exercise-induced muscle injury. Am J Physiol Regul Integr Comp Physiol 298: R1485-R1495, 2010. First published April 14, 2010; doi:10.1152/ajpregu.00467.2009.-The world's elderly population is expanding rapidly, and we are now faced with the significant challenge of maintaining or improving physical activity, independence, and quality of life in the elderly. Counteracting the progressive loss of muscle mass that occurs in the elderly, known as sarcopenia, represents a major hurdle in achieving these goals. Indirect evidence for a role of inflammation in sarcopenia is that markers of systemic inflammation correlate with the loss of muscle mass and strength in the elderly. More direct evidence is that compared with skeletal muscle of young people, the number of macrophages is lower, the gene expression of several cytokines is higher, and stress signaling proteins are activated in skeletal muscle of elderly people at rest. Sarcopenia may also result from inadequate repair and chronic maladaptation following muscle injury in the elderly. Macrophage infiltration and the gene expression of certain cytokines are reduced in skeletal muscle of elderly people compared with young people following exercise-induced muscle injury. Further research is required to identify the cause(s) of inflammation in skeletal muscle of elderly people. Additional work is also needed to expand our understanding of the cells, proteins, and transcription factors that regulate inflammation in the skeletal muscle of elderly people at rest and after exercise. This knowledge is critical for devising strategies to restrict sarcopenia, and improve the health of today's elderly population.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the effect of carbohydrate ingestion after maximal lengthening contractions of the knee extensors on circulating concentrations of myocellular proteins and cytokines, and cytokine mRNA expression in muscle. Using a cross-over design, 10 healthy males completed 5 sets of 10 lengthening (eccentric) contractions (unilateral leg press) at 120% 1 repetition-maximum. Subjects were randomized to consume a carbohydrate drink (15% weight per volume; 3 g/kg BM) for 3 h after exercise using one leg, or a placebo drink after exercise using the contralateral leg on another day. Blood samples (10 mL) were collected before exercise and after 0, 30, 60, 90, 120, 150, and 180 min of recovery. Muscle biopsies (vastus lateralis) were collected before exercise and after 3 h of recovery. Following carbohydrate ingestion, serum concentrations of glucose (30-90 min and at 150 min) and insulin (30-180 min) increased (P < 0.05) above pre-exercise values. Serum myoglobin concentration increased (similar to 250%; P < 0.05) after both trials. In contrast, serum cytokine concentrations were unchanged throughout recovery in both trials. Muscle mRNA expression for IL-8 (6.4-fold), MCP-1 (4.7-fold), and IL-6 (7.3-fold) increased substantially after carbohydrate ingestion. TNF-alpha mRNA expression did not change after either trial. Carbohydrate ingestion during early recovery from exercise-induced muscle injury may promote proinflammatory reactions within skeletal muscle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION: Hamstring strain injuries (HSI) are the predominant non-contact injury in many sports. Eccentric hamstring muscle weakness following intermittent running has been implicated within the aetiology of HSI. This weakness following intermittent running is often greater eccentrically than concentrically, however the cause of this unique, contraction mode specific phenomenon is unknown. AIM: To determine if this preferential eccentric decline in strength is caused by declines in voluntary hamstring muscle activation. METHODS: Fifteen recreationally active males completed 18 × 20m overground sprints. Maximal strength (concentric and eccentric knee flexor and concentric knee extensor) was determined isokinetically at the velocities of ±1800.s-1 and ±600.s- while hamstring muscle activation was assessed using surface electromyography, before and 15 minutes after the running protocol. RESULTS: Overground intermittent running caused greater eccentric (27.2 Nm; 95% CI = 11.2 to 43.3; p=0.0001) than concentric knee flexor weakness (9.3 Nm; 95% CI = -6.7 to 25.3; P=0.6361). Following the overground running, voluntary activation levels of the lateral hamstrings showed a significant decline (0.08%; 95% CI = 0.045 to 0.120; P<0.0001). In comparison, medial hamstring activation showed no change following intermittent running. CONCLUSION: Eccentric hamstring strength is decreased significantly following intermittent overground running. Voluntary activation deficits in the biceps femoris muscle are responsible for some portion of this weakness. The implications of this finding are significant because the biceps femoris muscle is the most frequently strained of all the hamstring muscles and because fatigue appears to play an important part in injury occurrence.