985 resultados para Late Paleozic ice age
Resumo:
Hallstätter Glacier is the northernmost glacier of Austria. Appendant to the northern Limestone Alps, the glacier is located at 47°28'50'' N, 13°36'50'' E in the Dachstein-region. At the same time with its advance linked to the Little Ice Age (LIA), research on changes in size and mass of Hallstätter glacier was started in 1842 by Friedrich Simony. He observed and documented the glacier retreat related to its last maximum extension in 1856. In addition, Hallstätter Glacier is a subject to scientific research to date. In this thesis methods and results of ongoing mass balance measurements are presented and compared to long term volume changes and meteorological observations. The current mass balance monitoring programm using the direct glaciological method was started 2006. In this context, 2009 the ice thickness was measured with ground penetrating radar. The result are used with digital elevation models reconstucted from historical maps and recent digital elevation models to calculate changes in shape and volume of Hallstätter Glacier. Based on current meteorological measurements near the glacier and longtime homogenized climate data provided by HISTALP, time series of precipitation and temperature beginning at the LIA are produced. These monthly precipitation and monthly mean temperature data are used to compare results of a simple degree day model with the volume change calculated from the difference of the digital elevation models. The two years of direct mass balance measurements are used to calibrate the degree day model. A number of possible future scenarios are produced to indicate prospective changes. Within the 150-year-period between 1856 and 2007 the Hallstätter Glacier lost 1940 meters of its length and 2.23 km**2 in area. 37% of the initial volume of 1856 remained. This retreat came along with a change in climate. The application of a running avarage of 30 years shows an increase in precipitation of 18.5% and a warming of 1.3°C near the glacier between 1866 and 1993. The mass loss was continued in the hydrological years 2006/2007 and 2007/2008 showing mean specific mass balance of -376 mm and -700 mm, respectively. Applying a temperature correction for the different minimum elevations of the glacier, the degree day approach based on the two measured mass balances can reproduce sign and order of magnitude of the volume change of Hallstätter Glacier since 1856. Nevertheless, the relative deviation is significant. Future scenarios show, that 30% of the entire glacier volume remains after subtracting the elevation changes between the digital elevation models of 2002 and 2007 ten times from the surface of 2007. The past and present mass changes of Hallstätter Glacier are showing a retreating glacier as a consequence of rising temperatures. Due to high precepitation, increased with previous warming, the Hallstätter Glacier can and will exist in lower elevation compared to inner alpine glaciers.
Resumo:
A well-dated high-resolution d13C record of the last 2400 a, based on the benthic foraminifera Cassidulina laevigata, is presented for Gullmar Fjord, Sweden. The time interval covers die Roman Warm Period (RWP), the Viking Age/Medieval Warm Period (VA/MWP), the little Ice Age (LIA) and the most recent warming. There is little variation in the d13C record until the early Viking Age (AD 800), when the d13C signal becomes significantly more negative and continues to decrease throughout the VA/MWP, The d13C signal increases both at the beginning and at the end of the LIA but is marked by more negative values during the larger part of the period. Since about 1970, the d13C values are more negative than the long-term average. This general negativity of the record may result from a higher flux of organic matter, possibly of terrestrial origin due to land-use changes together with moderate changes in stagnation periods since the VA/MWP. In most recent times, the oceanic Suess effect together with increased number of extended stagnation periods are probably the main causes of the shift towards more negative d13C values.
Resumo:
Selected multi-proxy and accurately dated marine and terrestrial records covering the past 2000 years in the Iberian Peninsula (IP) facilitated a comprehensive regional paleoclimate reconstruction for the Medieval Climate Anomaly (MCA: 900-1300 AD). The sequences enabled an integrated approach to land-sea comparisons and, despite local differences and some minor chronological inconsistencies, presented clear evidence that the MCA was a dry period in the Mediterranean IP. It was a period characterized by decreased lake levels, more xerophytic and heliophytic vegetation, a low frequency of floods, major Saharan eolian fluxes, and less fluvial input to marine basins. In contrast, reconstruction based on sequences from the Atlantic Ocean side of the peninsula indicated increased humidity. The data highlight the unique characteristics of the MCA relative to earlier (the Dark Ages, DA: ca. 500-900 years AD) and subsequent (the Little Ice Age, LIA: 1300-1850 years AD) colder periods. The reconstruction supports the hypothesis of Trouet et al. (2009, doi:10.1126/science.1166349), that a persistent positive mode of the North Atlantic Oscillation (NAO) dominated the MCA.
Resumo:
The Arctic is warming faster than anywhere else on Earth. Holocene proxy time-series are increasingly used to put this amplified response in perspective by understanding Arctic climate processes beyond the instrumental period. However, available datasets are scarce, unevenly distributed and often of coarse resolution. Glaciers are sensitive recorders of climate shifts and variations in rock-flour production transfer this signal to the lacustrine sediment archives of downstream lakes. Here, we present the first full Holocene record of continuous glacier variability on Svalbard from glacier-fed Lake Hajeren. This reconstruction is based on an undisturbed lake sediment core that covers the entire Holocene and resolves variability on centennial scales owing to 26 dating points. A toolbox of physical, geochemical (XRF) and magnetic proxies in combination with multivariate statistics has allowed us to fingerprint glacier activity in addition to other processes affecting the sediment record. Evidence from variations in sediment density, validated by changes in Ti concentrations, reveal glaciers remained present in the catchment following deglaciation prior to 11,300 cal BP, culminating in a Holocene maximum between 9.6 and 9.5 ka cal BP. Correspondence with freshwater pulses from Hudson Strait suggests that Early Holocene glacier advances were driven by the melting Laurentide Ice Sheet (LIS). We find that glaciers disappeared from the catchment between 7.4 and 6.7 ka cal BP, following a late Hypsithermal. Glacier reformation around 4250 cal BP marks the onset of the Neoglacial, supporting previous findings. Between 3380 and 3230 cal BP, we find evidence for a previously unreported centennial-scale glacier advance. Both events are concurrent with well-documented episodes of North Atlantic cooling. We argue that this brief forcing created suitable conditions for glaciers to reform in the catchment against a background of gradual orbital cooling. These findings highlight the climate-sensitivity of the small glaciers studied, which rapidly responded to climate shifts. The start of prolonged Neoglacial glacier activity commenced during the Little Ice Age (LIA) around 700 cal BP, in agreement with reported advances from other glaciers on Svalbard. In conclusion, this study proposes a three-stage Holocene climate history of Svalbard, successively driven by LIS meltwater pulses, episodic Atlantic cooling and declining summer insolation.
Resumo:
Instrumental monitoring of the climate at high northern latitudes has documented the ongoing warming of the last few decades. Climate modelling has also demonstrated that the global warming signal will be amplified in the polar region. Such temperature increases would have important implications on the ecosystem and biota of the Barents Sea. This study therefore aims to reconstruct the climatic changes of the Barents Sea based on benthic foraminifera over approximately the last 1400 years at the decadal to sub-decadal scale. Oxygen and carbon isotope analysis and benthic foraminiferal species counts indicate an overall warming trend of approximately 2.6°C through the 1400-year record. In addition, the well-documented cooling period equating to the 'Little Ice Age' is evident between c. 1650 and 1850. Most notably, a series of highly fluctuating temperatures are observed over the last century. An increase of 1.5°C is shown across this period. Thus for the first time we are able to demonstrate that the recent Arctic warming is also reflected in the oceanic micro-fauna.
Resumo:
Multidecadal variations in Atlantic sea surface temperatures (SST) influence the climate of the Northern Hemisphere. However, prior to the instrumental time period, information on multidecadal climate variability becomes limited, and there is a particular scarcity of sufficiently resolved SST reconstructions. Here, we present an eastern tropical North Atlantic reconstruction of SSTs based on foraminiferal (Globigerinoides ruber pink) Mg/Ca ratios that resolves multidecadal variability over the past 1700 years. Spectral power in the multidecadal band (50 to 70 years period) is significant over several time intervals suggesting that the Atlantic Multidecadal Oscillation (AMO) has been influencing local SST. Since our data exhibit high scatter the absence of multidecadal variability in the remaining record does not exclude the possibility that SST variations on this time scale might have been present without being detected in our data. Cooling by ~0.5 °C takes place between about AD 1250 and AD 1500; while this corresponds to the inception of the Little Ice Age (LIA), the end of the LIA is not reflected in our record and SST remains relatively low. This transition to cooler SSTs parallels the previously reconstructed shift in the North Atlantic Oscillation towards a low pre-20th century mean state and possibly reflects common solar forcing.
Resumo:
Sediments from holes drilled at 11 sites in the northern Gulf of Mexico during Deep Sea Drilling Project Leg 96 were analyzed for calcareous nannofossil content. All sediments recovered are Holocene and late Pleistocene in age and are within the Emiliania huxleyi Zone. The datum level represented by the lowest stratigraphic occurrence of dominant E. huxleyi occurs at two sites (Sites 615 and 619) and can be dated at approximately 84,000 yr. ago at Site 619. Reworked Cretaceous nannofossils are generally common or abundant and dominate the floral assemblages of the late Wisconsin glacial sediments. When present, indigenous late Quaternary species are rare or few in abundance. Slight increases in the contemporaneous Quaternary component of the floral assemblages can be documented by the use of a calculated in s/fu/reworked ratio. This ratio, based on the relative abundances of the indigenous Quaternary taxa and reworked taxa, shows potential both for local correlations between drill sites and for correlation with glacio-eustatic fluctuations during the late Pleistocene.
Resumo:
Stalagmites are important palaeo-climatic archives since their chemical and isotopic signatures have the potential to record high-resolution changes in temperature and precipitation over thousands of years. We present three U/Th-dated records of stalagmites (MA1-MA3) in the superhumid southern Andes, Chile (53°S). They grew simultaneously during the last five thousand years (ka BP) in a cave that developed in schist and granodiorite. Major and trace elements as well as the C and O isotope compositions of the stalagmites were analysed at high spatial and temporal resolution as proxies for palaeo-temperature and palaeo-precipitation. Calibrations are based on data from five years of monitoring the climate and hydrology inside and outside the cave and on data from 100 years of regional weather station records. Water-insoluble elements such as Y and HREE in the stalagmites indicate the amount of incorporated siliciclastic detritus. Monitoring shows that the quantity of detritus is controlled by the drip water rate once a threshold level has been exceeded. In general, drip rate variations of the stalagmites depend on the amount of rainfall. However, different drip-water pathways above each drip location gave rise to individual drip rate levels. Only one of the three stalagmites (MA1) had sufficiently high drip rates to record detrital proxies over its complete length. Carbonate-compatible element contents (e.g. U, Sr, Mg), which were measured up to sub-annual resolution, document changes in meteoric precipitation and related drip-water dilution. In addition, these soluble elements are controlled by leaching during weathering of the host rock and soils depending on the pH of acidic pore waters in the peaty soils of the cave's catchment area. In general, higher rainfall resulted in a lower concentration of these elements and vice versa. The Mg/Ca record of stalagmite MA1 was calibrated against meteoric precipitation records for the last 100 years from two regional weather stations. Carbonate-compatible soluble elements show similar patterns in the three stalagmites with generally high values when drip rates and detrital tracers were low and vice versa. d13C and d18O values are highly correlated in each stalagmite suggesting a predominantly drip rate dependent kinetic control by evaporation and/or outgassing. Only C and O isotopes from stalagmite MA1 that received the highest drip rates show a good correlation between detrital proxy elements and carbonate-compatible elements. A temperature-related change in rainwater isotope values modified the MA1 record during the Little Ice Age (~0.7-0.1 ka BP) that was ~1.5 °C colder than today. The isotopic composition of the stalagmites MA2 and MA3 that formed at lower drip rates shows a poor correlation with stalagmite MA1 and all other chemical proxies of MA1. 'Hendy tests' indicate that the degassing-controlled isotope fractionation of MA2 and MA3 had already started at the cave roof, especially when drip rates were low. Changing pathways and residence times of the seepage water caused a non-climatically controlled isotope fractionation, which may be generally important in ventilated caves during phases of low drip rates. Our proxies indicate that the Neoglacial cold phases from ~3.5 to 2.5 and from ~0.7 to 0.1 ka BP were characterised by 30% lower precipitation compared with the Medieval Warm Period from 1.2 to 0.8 ka BP, which was extremely humid in this region.
Resumo:
The Mid-Pleistocene transition (MPT) of the global climate system, initiated by a shift towards much larger northern hemisphere ice shields at around 920 ka and ending with predominance of 100 kyr ice age cyclicity since about 640 ka, is one of the fundamental enigmas in Quaternary climate evolution. Climate proxy records not exclusively linked to global ice volume are necessary to advance understanding of the MPT. Here we present a high-resolution Pleistocene magnetic susceptibility time series of 12 sediment cores from the subtropical South Atlantic essentially reflecting dissolution driven variations in carbonate accumulation controlled by changes in deep water circulation. In addition to characteristics known from delta18O records, the data sets reveal three remarkable features intimately related to the MPT: (1) an all-Pleistocene minimum of carbonate accumulation in the South Atlantic at 920 ka, (2) a MPT interim state of reduced carbonate deposition, indicating that the MPT period may have been a discrete state of the Pleistocene deep water circulation and climate system and (3) a terminal MPT event at around 540-530 ka documented in several peculiarities such as thick laminated layers of the giant diatom Ethmodiscus rex.
Resumo:
During RV Polarstern cruise ANT-XXIII/4 in 2006, a gravity core (PS69/335-2) and a giant box core (PS69/335-1) were retrieved from Maxwell Bay off King George Island (KGI). Comprehensive geochemical (bulk parameters, quantitative XRF, Inductively Coupled Plasma Mass Spectrometry) and radiometric dating analyses (14C, 210Pb) were performed on both cores. A comparison with geochemical data from local bedrock demonstrates a mostly detrital origin for the sediments, but also points to an overprint from changing bioproductivity in the overlying water column in addition to early diagenetic processes. Furthermore, ten tephra layers that were most probably derived from volcanic activity on Deception Island were identified. Variations in the vertical distribution of selected elements in Maxwell Bay sediments further indicate a shift in source rock provenance as a result of changing glacier extents during the past c. 1750 years that may be linked to the Little Ice Age and the Medieval Warm Period. Whereas no evidence for a significant increase in chemical weathering rates was found, 210Pb data revealed that mass accumulation rates in Maxwell Bay have almost tripled since the 1940s (0.66 g cm-2 yr-1 in AD 2006), which is probably linked to rapid glacier retreat in this region due to recent warming.
Resumo:
We investigate aragonitic skeletons of the Caribbean sclerosponge Ceratoporella nicholsoni from Jamaica, 20 m below sea level (mbsl), and Pedro Bank, 125 mbsl. We use d18O and Sr/Ca ratios as temperature proxies to reconstruct the Caribbean mixed layer and thermocline temperature history since 1400 A.D. with a decadal time resolution. Our age models are based on U/Th dating and locating of the radiocarbon bomb spike. The modern temperature difference between the two sites is used to tentatively calibrate the C. nicholsoni Sr/Ca thermometer. The resulting calibration points to a temperature sensitivity of Sr/Ca in C. nicholsoni aragonite of about -0.1 mmol/mol/K. Our Sr/Ca records reveal a pronounced warming from the early 19th to the late 20th century, both at 20 and 125 mbsl. Two temperature minima in the shallow water record during the late 17th and early 19th century correspond to the Maunder and Dalton sunspot minima, respectively. Another major cooling occurred in the late 16th century and is not correlatable with a sunspot minimum. The temperature contrast between the two sites decreased from the 14th century to a minimum in the late 17th century and subsequently increased to modern values in the early 19th century. This is interpreted as a long-term deepening and subsequent shoaling of the Caribbean thermocline. The major trends of the Sr/Ca records are reproduced in both specimens but hardly reflected in the d18O records.
Resumo:
The study of diatoms and benthic foraminifers from the southeastern shelf of the Laptev Sea shows that their most diverse and abundant recent assemblages populate the peripheral underwater part of the Lena River delta representing the marginal filter of the sea. This area is characterized by intense interaction between fresh waters of Siberian rivers and basin seawater, Atlantic one included. Local Late Holocene (~last 2300 years) environments reflect the main regional and global paleoclimatic changes, the Medieval Warm Period (~600-1100 years B.P.) and the Little Ice Age (~100-600 years B.P.) inclusive. In addition, composition and distribution of planktonic foraminifers implies strong influence of Atlantic water during the Holocene optimum ~5100-6200 years B.P.
Resumo:
The Holocene development of a treed palsa bog and a peat plateau bog, located near the railroad to Churchill in the Hudson Bay Lowlands of northeastern Manitoba, was traced using peat macrofossil and radiocarbon analyses. Both sites first developed as wet rich fens through paludification of forested uplands around 6800 cal. yr BP. Results show a 20th-century age for the palsa formation and repeated periods of permafrost aggradation and collapse at the peat plateau site during the late Holocene. This timing of permafrost dynamics corroborates well with that inferred from previous studies on other permafrost peatlands in the same region. The developmental history of the palsa and peat plateau bogs is similar to that of adjacent permafrost-free fens, except for the specific frost heave and collapse features associated with permafrost dynamics. Permafrost aggradation and degradation is ascribed to regional climatic, local autogenic and other factors. Particularly the very recent palsa development can be assessed in terms of climatic changes as inferred from meteorological data and surface hydrological changes related to construction of the railroad. The results indicate that cold years with limited snowfall as well as altered drainage patterns associated with infrastructure development may have contributed to the recent palsa formation.
Resumo:
Reconstructions of atmospheric CO2 concentrations based on Antarctic ice cores reveal significant changes during the Holocene epoch, but the processes responsible for these changes in CO2 concentrations have not been unambiguously identified. Distinct characteristics in the carbon isotope signatures of the major carbon reservoirs (ocean, biosphere, sediments and atmosphere) constrain variations in the CO2 fluxes between those reservoirs. Here we present a highly resolved atmospheric d13C record for the past 11,000 years from measurements on atmospheric CO2 trapped in an Antarctic ice core. From mass-balance inverse model calculations performed with a simplified carbon cycle model, we show that the decrease in atmospheric CO2 of about 5 parts per million by volume (p.p.m.v.) and the increase in d13C of about 0.25% during the early Holocene is most probably the result of a combination of carbon uptake of about 290 gigatonnes of carbon by the land biosphere and carbon release from the ocean in response to carbonate compensation of the terrestrial uptake during the termination of the last ice age. The 20 p.p.m.v. increase of atmospheric CO2 and the small decrease in d13C of about 0.05% during the later Holocene can mostly be explained by contributions from carbonate compensation of earlier land-biosphere uptake and coral reef formation, with only a minor contribution from a small decrease of the land-biosphere carbon inventory.