978 resultados para Laser-plasma interaction
Resumo:
We report spatially and temporally resolved measurements of self-generated multi-megagauss magnetic fields produced during ultrahigh intensity laser plasma interactions. Spatially resolved measurements of the magnetic fields show an asymmetry in the distribution of field with respect to the angle of laser incidence. Temporally resolved measurements of the self-generated third harmonic suggest that the strength of the magnetic field is proportional to the square root of laser intensity (i.e., the laser B-field) during the rise of the laser pulse. The experimental results are compared with numerical simulations using a particle-in-cell code which also shows clear asymmetry of the field profile and similar magnetic field growth rates and scalings.
Resumo:
Space plasmas provide abundant evidence of highly energetic particle population, resulting in a long-tailed non-Maxwellian distribution. Furthermore, the first stages in the evolution of plasmas produced during laser-matter interaction are dominated by nonthermal electrons, as confirmed by experimental observation and computer simulations. This phenomenon is efficiently modelled via a kappa-type distribution. We present an overview, from first principles, of the effect of superthermality on the characteristics of electrostatic plasma waves. We rely on a fluid model for ion-acoustic excitations, employing a kappa distribution function to model excess superthermality of the electron distribution. Focusing on nonlinear excitations (solitons), in the form of solitary waves (pulses), shocks and envelope solitons, and employing standard methodological tools of nonlinear plasmadynamical analysis, we discuss the role of excess superthermality in their propagation dynamics (existence laws, stability profile), geometric characteristics and stability. Numerical simulations are employed to confirm theoretical predictions, namely in terms of the stability of electrostatic pulses, as well as the modulational stability profile of bright- and dark-type envelope solitons.
Resumo:
Laser accelerated proton beams have been proposed to be used in different research fields. A great interest has risen for the potential replacement of conventional accelerating machines with laser-based accelerators, and in particular for the development of new concepts of more compact and cheaper hadrontherapy centers. In this context the ELIMED (ELI MEDical applications) research project has been launched by INFN-LNS and ASCR-FZU researchers within the pan-European ELI-Beamlines facility framework. The ELIMED project aims to demonstrate the potential clinical applicability of optically accelerated proton beams and to realize a laser-accelerated ion transport beamline for multi-disciplinary user applications. In this framework the eye melanoma, as for instance the uveal melanoma normally treated with 62 MeV proton beams produced by standard accelerators, will be considered as a model system to demonstrate the potential clinical use of laser-driven protons in hadrontherapy, especially because of the limited constraints in terms of proton energy and irradiation geometry for this particular tumour treatment. Several challenges, starting from laser-target interaction and beam transport development up to dosimetry and radiobiology, need to be overcome in order to reach the ELIMED final goals. A crucial role will be played by the final design and realization of a transport beamline capable to provide ion beams with proper characteristics in terms of energy spectrum and angular distribution which will allow performing dosimetric tests and biological cell irradiation. A first prototype of the transport beamline has been already designed and other transport elements are under construction in order to perform a first experimental test with the TARANIS laser system by the end of 2013. A wide international collaboration among specialists of different disciplines like Physics, Biology, Chemistry, Medicine and medical doctors coming from Europe, Japan, and the US is growing up around the ELIMED project with the aim to work on the conceptual design, technical and experimental realization of this core beamline of the ELI Beamlines facility. © 2013 SPIE.
Resumo:
Suitable instrumentation for laser-accelerated proton (ion) beams is critical for development of integrated, laser-driven ion accelerator systems. Instrumentation aimed at beam diagnostics and control must be applied to the driving laser pulse, the laser-plasma that forms at the target and the emergent proton (ion) bunch in a correlated way to develop these novel accelerators. This report is a brief overview of established diagnostic techniques and new developments based on material presented at the first workshop on 'Instrumentation for Diagnostics and Control of Laser-accelerated Proton (Ion) Beams' in Abingdon, UK. It includes radiochromic film (RCF), image plates (IP), micro-channel plates (MCP), Thomson spectrometers, prompt inline scintillators, time and space-resolved interferometry (TASRI) and nuclear activation schemes. Repetition-rated instrumentation requirements for target metrology are also addressed. (C) 2013 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Resumo:
The collision of two plasma clouds at a speed that exceeds the ion acoustic speed can result in the formation of shocks. This phenomenon is observed not only in astrophysical scenarios, such as the propagation of supernova remnant (SNR) blast shells into the interstellar medium, but also in laboratory-based laser-plasma experiments. These experiments and supporting simulations are thus seen as an attractive platform for small-scale reproduction and study of astrophysical shocks in the laboratory. We model two plasma clouds, which consist of electrons and ions, with a 2D particle-in-cell simulation. The ion temperatures of both clouds differ by a factor of ten. Both clouds collide at a speed that is realistic for laboratory studies and for SNR shocks in their late evolution phase, like that of RCW86. A magnetic field, which is orthogonal to the simulation plane, has a strength that is comparable to that of SNR shocks. A forward shock forms between the overlap layer of both plasma clouds and the cloud with cooler ions. A large-amplitude ion acoustic wave is observed between the overlap layer and the cloud with hotter ions. It does not steepen into a reverse shock because its speed is below the ion acoustic speed. A gradient of the magnetic field amplitude builds up close to the forward shock as it compresses the magnetic field. This gradient gives rise to an electron drift that is fast enough to trigger an instability. Electrostatic ion acoustic wave turbulence develops ahead of the shock, widens its transition layer, and thermalizes the ions, but the forward shock remains intact. © 2014 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
Resumo:
Using high-energy (∼0.5 GeV) electron beams generated by laser wakefield acceleration (LWFA), bremsstrahlung radiation was created by interacting these beams with various solid targets. Secondary processes generate high-energy electrons, positrons, and neutrons, which can be measured shot-to-shot using magnetic spectrometers, short half-life activation, and Compton scattering. Presented here are proof-of-principle results from a high-resolution, high-energy gamma-ray spectrometer capable of single-shot operation, and high repetition rate activation diagnostics. We describe the techniques used in these measurements and their potential applications in diagnosing LWFA electron beams and measuring high-energy radiation from laser-plasma interactions.
Resumo:
Detailed knowledge of fast electron energy transport following the interaction of ultrashort intense laser pulses is a key subject for fast ignition. This is a problem relevant to many areas of laser-plasma physics with particular importance to fast ignition and X-ray secondary source development, necessary for the development of large-scale facilities such as HiPER and ELI. Operating two orthogonal crystal spectrometers set at Bragg angles close to 45 degrees determines the X-ray s- and p-polarization ratio. From this ratio, it is possible to infer the velocity distribution function of the fast electron beam within the dense plasma. We report on results of polarization measurements at high density for sulphur and nickel buried layer targets in the high intensity range of 10(19) - 10(21) Wcm(-2). We observe at 45 degrees the Ly-alpha doublet using two sets of orthogonal highly-orientated pyrolytic graphite (HOPG) crystals set in 1(st) order for sulphur and 3(rd) order for nickel.
Resumo:
La structuration laser femtoseconde de verres d’oxydes est aujourd’hui un domaine de recherche en pleine expansion. L’interaction laser-matière est de plus en plus utilisée pour sa facilité de mise en œuvre et les nombreuses applications qui découlent de la fabrication des composants photoniques, déjà utilisés dans l’industrie des hautes technologies. En effet, un faisceau d’impulsions ultracourtes focalisé dans un matériau transparent atteint une intensité suffisante pour modifier la matière en trois dimensions sur des échelles micro et nanométriques. Cependant, l’interaction laser-matière à ces régimes d’intensité n’est pas encore complètement maîtrisée, et les matériaux employés ne sont pas entièrement adaptés aux nouvelles applications photoniques. Par ce travail de thèse, nous nous efforçons donc d’apporter des réponses à ces interrogations. Le mémoire est articulé autour de deux grands volets. Le premier aborde la question de l’interaction de surface de verres avec de telles impulsions lumineuses qui mènent à l’auto-organisation périodique de la matière structurée. L’influence du dopage en ions photosensibles et des paramètres d’irradiation est étudiée afin d’appuyer et de conforter le modèle d’incubation pour la formation de nanoréseaux de surface. À travers une approche innovante, nous avons réussi à apporter un contrôle de ces structures nanométriques périodiques pour de futures applications. Le second volet traite de cristallisation localisée en volume induite en grande partie par l’interaction laser-matière. Plusieurs matrices vitreuses, avec différents dopages en sel d’argent, ont été étudiées pour comprendre les mécanismes de précipitation de nanoparticules d’argent. Ce travail démontre le lien entre la physicochimie de la matrice vitreuse et le caractère hors équilibre thermodynamique de l’interaction qui influence les conditions de nucléation et de croissance de ces nano-objets. Tous ces résultats sont confrontés à des modélisations de la réponse optique du plasmon de surface des nanoparticules métalliques. Les nombreuses perspectives de ce travail ouvrent sur de nouvelles approches quant à la caractérisation, aux applications et à la compréhension de l’interaction laser femtoseconde pour l’inscription directe de briques photoniques dans des matrices vitreuses.
Resumo:
The present thesis is a contribution to the study of laser-solid interaction. Despite the numerous applications resulting from the recent use of laser technology, there is still a lack of satisfactory answers to theoretical questions regarding the mechanism leading to the structural changes induced by femtosecond lasers in materials. We provide here theoretical approaches for the description of the structural response of different solids (cerium, samarium sulfide, bismuth and germanium) to femtosecond laser excitation. Particular interest is given to the description of the effects of the laser pulse on the electronic systems and changes of the potential energy surface for the ions. Although the general approach of laser-excited solids remains the same, the potential energy surface which drives the structural changes is calculated with different theoretical models for each material. This is due to the difference of the electronic properties of the studied systems. We use the Falicov model combined with an hydrodynamic method to study photoinduced phase changes in cerium. The local density approximation (LDA) together with the Hubbard-type Hamiltonian (LDA+U) in the framework of density functional theory (DFT) is used to describe the structural properties of samarium sulfide. We parametrize the time-dependent potential energy surface (calculated using DFT+ LDA) of bismuth on which we perform quantum dynamical simulations to study the experimentally observed amplitude collapse and revival of coherent $A_{1g}$ phonons. On the basis of a time-dependent potential energy surface calculated from a non-orthogonal tight binding Hamiltonian, we perform molecular dynamics simulation to analyze the time evolution (coherent phonons, ultrafast nonthermal melting) of germanium under laser excitation. The thermodynamic equilibrium properties of germanium are also reported. With the obtained results we are able to give many clarifications and interpretations of experimental results and also make predictions.
Resumo:
The theoretical model and underlying physics described in this thesis are about the interaction of femtosecond-laser and XUV pulses with solids. The key to understand the basics of such interaction is to study the structural response of the materials after laser interaction. Depending on the laser characteristics, laser-solid interaction can result in a wide range of structural responses such as solid-solid phase transitions, vacuum phonon squeezing, ultrafast melting, generation of coherent phonons, etc. During my research work, I have modeled the systems irradiated by low-, medium- and high-laser intensities, and studied different types of structural dynamics of solids at various laser fluences.
Resumo:
To establish safety parameters, we in vitro studied the increase in intrapulpal temperature caused by the use of a cw CO2 laser. A thermistor was implanted in the inner part of the pulpal chamber of 25 human lower third molars to measure the intrapulpal temperature produced by laser powers between 2-10 W and exposure times of 0.5-25.0 s. The Pearson linear correlation factor applied to the measured values showed there is a direct relationship between the independent variable and the applied power. A variance analysis produced the linear regression equation: T=1.10+(0.127)E where T is the temperature and E the energy. The results showed that, with a power of 4 W and maximum exposure time of 2.5 s (10 J) and a power density of 12738.85 W cm-2, there will be no damaging reactions affecting the pulpal tissues.
Resumo:
A study was conducted on the interaction of two pulses in the nonlinear Schrodinger (NLS) model. The presence of different scenarios of the behavior depending on the initial parameters of the pulses, such as the pulse areas, the relative phase shift, the spatial and frequency separations were shown. It was observed that a pure real initial condition of the NLS equation can result in additional moving solitons.
Resumo:
Tissue repair is an integration of dynamic interactive processes that involves soluble mediators, blood components, production of extra-cellular matrix and mesenchymal cells. Many studies involving the use of LLLT shows that the healing process is favored by such therapy. The aim of this work was to evaluate, through histological analysis, the tissue effects of cutaneous wounds submitted to different intensities and a same irradiation dose with lasers in λ670 or λ685nm. Eighteen animals were divided in two experimental groups according to wavelength used (λ670 or λ685nm). Each one of these groups was divided still in three subgroups of three animals each, related to the intensity of applied irradiation (2, 15 or 25mW). Twelve animals acted as untreated controls and were not irradiated. The irradiation was carried out during seven days. The animals were sacrificed eight days after surgery. The specimens were removed, kept in 4% formaldehyde for 24 hours, routinely prepared to wax, stained with H&E and analyzed under light microscopy. The histological characteristics observed, so much in the irradiated animals, as in the control, they are indicative of a substitution repair process, however, the LLLT modulatory positive effect was observed, in the healing process, mainly associate to the use of the shorter wavelength and low power. The results of the present study indicate that LLLT improves cutaneous wound repair and best results are achieved when higher potencies associated to short wavelengths or lower potencies associated to higher wavelengths are used.