897 resultados para Laser additive technology
Uncooled DBR laser directly modulated at 3.125 gb/s as athermal transmitter for low-cost WDM systems
Resumo:
This paper shows how computational techniques have been used to develop axi-symmetric, straight, sonic-line, minimum length micro nozzles that are suitable for laser micro-machining applications. Gas jets are used during laser micro-machining processing applications to shield the interaction zone between laser and workpiece material, and they determine the machining efficiency of such applications. The paper discusses the nature of laser-material interactions and the importance of using computational fluid dynamics to model pressure distributions in short nozzles that are used to deliver gas to the laser-material interaction zone. Experimental results are presented that highlight unique problems associated with laser micro machining using gas jets.
Resumo:
The first demonstration of a directly modulated microring laser array is presented for on-off keyed, wavelength- division- multiplexed fiber-optic data transmission. GaInAsP-InP microring resonators oscillating at separate wavelengths in the 1.5-μm band are vertically coupled to a common passive waveguide bus, which is fabricated on the reverse side of the InP membrane. Two microrings defined with radii for a wavelength channel separation of 6 nm have been assessed for both individual and simultaneous operation. Negligible power penalty (<0.2 dB) is observed for wavelength-division-multiplexed operation with and without transmission over a 25-km fiber span in a manner which indicates low crosstalk between the integrated sources. A device area of less than 0.12 mm2 per microring on a common passive bus allows a highly scalable solution for short-reach wavelength-multiplexed links. © 2008 IEEE.
Resumo:
The importance of metal coating technologies drives the continuous improvement of metal deposition techniques for application in a wide range of industrial sectors. This work presents the foundations of a new process technology for the deposition of Ti and Ti64 coatings on various substrates using supersonic powder streams and impact site laser heating. Full density metallic deposits are obtained under appropriate impact conditions without the need for transiting the melting point of the deposited material or substrate leading to large energy savings. Details of the experimental approach will be presented along with the general characteristics of the titanium coatings produced using this novel coatings method.
Resumo:
The importance of metal coating technologies drives the continuous improvement of metal deposition techniques for application in a wide range of industrial sectors. This work presents the foundations of a new process technology for the deposition of titanium coatings on steel tube substrates using supersonic powder streams and impact site laser heating, known as Supersonic Laser Deposition (SLD). Metallic deposits are obtained under appropriate impact conditions without the need for exceeding the melting point of the deposited material or substrate leading to improved coating quality. Details of the experimental approach are presented along with the general characteristics of the titanium coating produced using this novel coatings method. © 2011 Elsevier B.V. All rights reserved.
Resumo:
A theoretical model for Dicke superradiance (SR) in diode lasers is proposed using the travelling wave method with a spatially resolved absorber and spectrally resolved gain. The role of electrode configuration and optical bandwidth are compared and contrasted as a route to enhance femtosecond pulse power. While pulse duration can be significantly reduced through careful absorber length specification, stability is degraded. However an increased spectral gain bandwidth of up to 150 nm is predicted to allow pulsewidth reductions of down to 10 fs and over 500-W peak power without further degradation in pulse stability. © 2011 IEEE.
Resumo:
The capability of manufacturing coatings is of central importance in engineering design. Many components require nowadays the application of additional layers, to enhance mechanical properties and protect against hostile environments. Supersonic Laser Deposition (SLD) is a novel coating method, based upon Cold Spray (CS) principles. In this technique the deposition velocities can be significantly lower than those required for effective bonding in CS applications. The addition of laser heat energy permits a change in the thermodynamic experience of impacting particles, thereby offering a greater opportunity for metallurgical bonding at lower velocities compared to the CS process technology. The work reported in this paper demonstrates the ability of the SLD process to deliver hard facing materials to engineering surfaces. Stellite-6 has been deposited on low carbon steel tubes over a range of process parameters, determining the appropriate target power and traverse speeds for coating deposition. Coating properties and parameters were examined to determine the main properties, micro-structure and processing cost. Their morphology was studied through optical microscopy, SEM and X-Ray Diffraction. The results have shown that SLD is capable of depositing Stellite-6, with enhanced properties compared to laser clad counterparts.
Resumo:
We bring together two areas of terahertz (THz) technology that have benefited from recent advancements in research, i.e., graphene, a material that has plasmonic resonances in the THz frequency, and quantum cascade lasers (QCLs), a compact electrically driven unipolar source of THz radiation. We demonstrate the use of single-layer large-area graphene to indirectly modulate a THz QCL operating at 2.0 THz. By tuning the Fermi level of the graphene via a capacitively coupled backgate voltage, the optical conductivity and, hence, the THz transmission can be varied. We show that, by changing the pulsing frequency of the backgate, the THz transmission can be altered. We also show that, by varying the pulsing frequency of the backgate from tens of Hz to a few kHz, the amplitude-modulated THz signal can be switched by 15% from a low state to a high state. © 2009-2012 IEEE.