988 resultados para Land equivalent ratio
Resumo:
The first Air Chemistry Observatory at the German Antarctic station Georg von Neumayer (GvN) was operated for 10 years from 1982 to 1991. The focus of the established observational programme was on characterizing the physical properties and chemical composition of the aerosol, as well as on monitoring the changing trace gas composition of the background atmosphere, especially concerning greenhouse gases. The observatory was designed by the Institut für Umweltphysik, University of Heidelberg (UHEIIUP). The experiments were installed inside the bivouac lodge, mounted on a sledge and put upon a snow hill to prevent snow accumulation during blizzards. All experiments were under daily control and daily performance protocols were documented. A ventilated stainless steel inlet stack (total height about 3-4 m above the snow surface) with a 50% aerodynamic cut-off diameter around 7-10 µm at wind velocities between 4-10 m/s supplied all experiments with ambient air. Contamination free sampling was realized by several means: (i) The Air Chemistry Observatory was situated in a clean air area about 1500 m south of GvN. Due to the fact that northern wind directions are very rare, contamination from the base can be excluded for most of the time. (ii) The power supply (20 kW) is provided by a cable from the main station, thus no fuel-driven generator is operated in the very vicinity. (iii) Contamination-free sampling is controlled by the permanently recorded wind velocity, wind direction and by condensation particle concentration. Contamination was indicated if one of the following criteria were given: Wind direction within a 330°-30° sector, wind velocity <2.2 m/s or >17.5 m/s, or condensation particle concentrations >2500/cm**3 during summer, >800/cm**3 during spring/autumn and >400/cm**3 during winter. If one or a definable combination of these criteria were given, high volume aerosol sampling and part of the trace gas sampling were interrupted. Starting at 1982 through 1991-01-14 surface ozone was measured with an electrochemical concentration cell (ECC). Surface ozone mixing ratio are given in ppbv = parts per 10**9 by volume. The averaging time corresponds to the given time intervals in the data sheet. The accuracy of the values are better than ±1 ppbv and the detection limit is around 1.0 ppbv. Aerosols were sampled on two Whatman 541 cellulose filters in series and analyzed by ion chromatography at the UHEI-IUP. Generally, the sampling period was seven days but could be up to two weeks on occasion. The air flow was around 100 m**3/h and typically 10000-20000 m**3 of ambient air was forced through the filters for one sample. Concentration values are given in nanogram (ng) per 1 m**3 air at standard pressure and temperature (1013 mbar, 273.16 K). Uncertainties of the values were approximately ±10% to ±15% for the main components MSA, chloride, nitrate, sulfate and sodium, and between ±20% and ±30% for the minor species bromide, ammonium, potassium, magnesium and calcium.
Resumo:
Four firn cores were retrieved in 2007 at two ridges in the area of the Ekström Ice Shelf, Dronning Maud Land, coastal East Antarctica, in order to investigate the recent regional climate variability and the potential for future extraction of an intermediate-depth core. Stable water-isotope analysis, tritium content and electrical conductivity were used to date the cores. For the period 1981-2006 a strong and significant correlation between the stable-isotope composition of firn cores in the hinterland and mean monthly air temperatures at Neumayer station was (r=0.54-0.71). No atmospheric warming or cooling trend is inferred from our stable-isotope data for the period 1962-2006. The stable-isotope record of the ice/firn cores could expand well beyond the meteorological record of the region. No significant temporal variation of accumulation rates was detected. However, decreasing accumulation rates were found from coast to hinterland, as well as from east (Halvfarryggen) to west (Søråsen). The deuterium excess (d) exhibits similar differences (higher d at Søråsen, lower d at Halvfarryggen), with a weak negative temporal trend on Halvfarryggen (0.04 per mil/a), probably implying increasing oceanic input. We conclude that Halvfarryggen acts as a natural barrier for moisture-carrying air masses circulating in the region from east to west.
Resumo:
Samoylov Island is centrally located within the Lena River Delta at 72° N, 126° E and lies within the Siberian zone of continuous permafrost. The landscape on Samoylov Island consists mainly of late Holocene river terraces with polygonal tundra, ponds and lakes, and an active floodplain. The island has been the focus of numerous multidisciplinary studies since 1993, which have focused on climate, land cover, ecology, hydrology, permafrost and limnology. This paper aims to provide a framework for future studies by describing the characteristics of the island's meteorological parameters (temperature, radiation and snow cover), soil temperature, and soil moisture. The land surface characteristics have been described using high resolution aerial images in combination with data from ground-based observations. Of note is that deeper permafrost temperatures have increased between 0.3 to 1.3 °C over the last five years. However, no clear warming of air and active layer temperatures is detected since 1998, though winter air temperatures during recent years have not been as cold as in earlier years.
Resumo:
To project the future development of the soil organic carbon (SOC) storage in permafrost environments, the spatial and vertical distribution of key soil properties and their landscape controls needs to be understood. This article reports findings from the Arctic Lena River Delta where we sampled 50 soil pedons. These were classified according to the U.S.D.A. Soil Taxonomy and fall mostly into the Gelisol soil order used for permafrost-affected soils. Soil profiles have been sampled for the active layer (mean depth 58±10 cm) and the upper permafrost to one meter depth. We analyze SOC stocks and key soil properties, i.e. C%, N%, C/N, bulk density, visible ice and water content. These are compared for different landscape groupings of pedons according to geomorphology, soil and land cover and for different vertical depth increments. High vertical resolution plots are used to understand soil development. These show that SOC storage can be highly variable with depth. We recommend the treatment of permafrost-affected soils according to subdivisions into: the surface organic layer, mineral subsoil in the active layer, organic enriched cryoturbated or buried horizons and the mineral subsoil in the permafrost. The major geomorphological units of a subregion of the Lena River Delta were mapped with a land form classification using a data-fusion approach of optical satellite imagery and digital elevation data to upscale SOC storage. Landscape mean SOC storage is estimated to 19.2±2.0 kg C/m**2. Our results show that the geomorphological setting explains more soil variability than soil taxonomy classes or vegetation cover. The soils from the oldest, Pleistocene aged, unit of the delta store the highest amount of SOC per m**2 followed by the Holocene river terrace. The Pleistocene terrace affected by thermal-degradation, the recent floodplain and bare alluvial sediments store considerably less SOC in descending order.
Resumo:
Pb and Ba concentrations and Pb isotopic compositions are reported for firn core and snow pit samples from Victoria Land, Antarctica, dating from 1872 AD to 1994 AD. From variations in Pb/Ba ratios and Pb isotopic compositions, two periods of major Pb enhancements were identified, from 1891 to 1908 AD and from 1948 to 1994 AD. The earlier pollution event is attributed to Pb emissions from non-ferrous metal production and coal combustion in the Southern Hemisphere and is in excellent agreement with coincident pollution inputs reported in firn/ice cores from two other regions of Antarctica, at Coats Land and Law Dome. Using Pb isotopic systematics, it was calculated that ~50% of Pb deposited in Victoria Land in 1897 originated from anthropogenic emission sources. The more recent period of Pb enhancements, from 1948 to 1994 AD, corresponds to the introduction and widespread use of gasoline alkyl Pb additives in automobiles in the Southern Hemisphere, with anthropogenic Pb inputs averaging 60% of total Pb but with large uncertainty. Intra- and inter-annual variations in Pb concentrations and isotopic compositions were evaluated in snow pits samples corresponding to the period 1991-1994. Substantial variations in Pb/ Ba and 206Pb/207Pb ratios were detected but the absence of a regular seasonal pattern for these parameters suggests that the transport and deposition of aerosols to the Antarctic ice sheet are complex and vary from year to year.
Resumo:
Micropaleontological and biomarker data from two high-accumulation marine sites from the Coastal and Continental Shelf Zone (CCSZ) off East Antarctica (Adélie Land at w140°E and eastern Prydz Bay at w77°E) are used to reconstruct Holocene changes in sea ice and wind stress at the basin-wide scale. These data demonstrate congruent increase in sea-ice concentration/persistence and wind stress-related sea-surface turbulence in the two regions since 7 cal ka BP, with a particularly strong signal since 4.5 - 3.5 cal ka BP. Comparison of these high latitude records with sea ice and turbulence records from the southern mid-latitudes highlights distinctive climatic evolutions according to the different latitudinal bands. Sea-ice persistence and turbulence increase in East Antarctica CCSZ are opposite to sea-surface warming and sea-ice retreat recorded after 4.5 - 3.5 cal ka BP in the East Atlantic and Indian sector between 55 and 45°S. At the same period, paleodata suggest SST cooling in all major coastal upwelling systems of the southern hemisphere, caused by the northward transport of subpolar surface waters as a response to southern Westerlies reinforcement. We therefore propose, as suggested for the northern hemisphere, that Holocene changes in the latitudinal insolation gradient, primarily forced by obliquity and precession and amplified by sea-ice and glacial-ice expansions in the Antarctic realm, are responsible for the observed contrasted latitudinal patterns of southern latitudes.
Resumo:
This dataset includes basic information (location and depth) and major ion chemistry (Sodium, Chloride, Calcium, Nitrate) of snow cores from East Antarctic ice sheet. The snow cores were collected from two different regions - central Dronning Maud Land (cDML) and Princess Elizabeth Land (PEL) during the austral summer of 2008-09.
Resumo:
40Ar/39Ar analyses of tephra and clasts of volcanic rock provide age constraints for upper parts of the CRP-2A core. Single-crystal laser-fusion analyses of anorthoclase phenocrysts from three tephra-bearing layers yielded the most precise age constraints for CRP-2A. The dated tephra layers are: 1) a 2.7-m-thick interval of pumice and ash layers between 111.5 and 114.2 meters below sea floor (mbsf) (weighted mean age = 21.44 ± 0.05 Ma, +2.2); 2) a concentration of pumice near 193.4 mbsf (23.98 ± 0.13 Ma): and 3) a concentration of pumice near 280 mbsf (24,22 ± 0.03 Ma) (all ages are calibrated relative to Fish Canyon Tuff sanidine at 27.84 Ma). The 111 to 114 mbsf tephra is almost entirely non-reworked, and the 193 mbsf and 280 mbsf tephra concentrations are interpreted as being reworked and redeposited soon after eruption. All three of the tephra ages are therefore considered to be equivalent to depositional ages. The variation in precision of these three age determinations is largely a function of phenocryst size and abundance. The accuracy of these ages is equal to the accuracy of the current calibration of the 40Ar/39Ar methode (about ± 1 %). 40Ar/39Ar results from volcanic clasts provide three additional maximum age constraints for the CRP-2A core. Single-crystal laser-fusion of sanidine phenocrysts from a rhyolitic clast from 294 mbsf yielded a precise maximum depositional age of 24.98 ± 0.08 Ma, and plateau ages of groundmass concentrates from basaltic clasts near 36.02 mbsf and 125.92 mbsf yielded maximum depositional ages of 19.18 ± 0.12 Ma, and 22.56 ± 0.14 Ma, respectively. The 40Ar/39Ar data, in association with biostratigraphic, paleomagnetic, and isotopic age constraints for CRP-2A, confirm interpretation for rapid sedimentation rates in the 36 to 280 mbsf interval, particularly in the 193 to 280 mbsf interval where they support interpretations for sedimentation cycles spanning 100 k.y. intervals. In addition to the 19 to 25 Ma ages measured from thephra layers and clasts, provenance-related ages ranging from 150 to 450 Ma were determined from clasts and individual detrital or xenocrystic crystals from CRP-2A.
Resumo:
The stable hydrogen isotope composition of lipid biomarkers, such as alkenones, is a promising new tool for the improvement of palaeosalinity reconstructions. Laboratory studies confirmed the correlation between lipid biomarker dD composition (dDLipid), water dD composition (dDH2O) and salinity; yet there is limited insight into the applicability of this proxy in oceanic environments. To fill this gap, we test the use of the dD composition of alkenones (dDC37) and palmitic acid (dDPA) as salinity proxies using samples of surface suspended material along the distinct salinity gradient induced by the Amazon Plume. Our results indicate a positive correlation between salinity and dDH2O, while the relationship between dDH2O and dDLipid is more complex: dDPAM correlates strongly with dDH2O (r2 = 0.81) and shows a salinity-dependent isotopic fractionation factor. dDC37 only correlates with dDH2O in a small number (n = 8) of samples with alkenone concentrations > 10 ng L**-1, while there is no correlation if all samples are taken into account. These findings are mirrored by alkenone-based temperature reconstructions, which are inaccurate for samples with low alkenone concentrations. Deviations in dDC37 and temperature are likely to be caused by limited haptophyte algae growth due to low salinity and light limitation imposed by the Amazon Plume. Our study confirms the applicability of dDLipid as a salinity proxy in oceanic environments. But it raises a note of caution concerning regions where low alkenone production can be expected due to low salinity and light limitation, for instance, under strong riverine discharge.
Resumo:
Future warming is predicted to shift the Earth system into a mode with progressive increase and vigour of extreme climate events possibly stimulating other mechanisms that invigorate global warming. This study provides new data and modelling investigating climatic consequences and biogeochemical feedbacks that happened in a warmer world ~112 Myr ago. Our study focuses on the Cretaceous Oceanic Anoxic Event (OAE) 1b and explores how the Earth system responded to a moderate ~25,000 yr lasting climate perturbation that is modelled to be less than 1 °C in global average temperature. Using a new chronological model for OAE 1b we present high-resolution elemental and bulk carbon isotope records from DSDP Site 545 from Mazagan Plateau off NW Africa and combine this information with a coupled atmosphere-land-ocean model. The simulations suggest that a perturbation at the onset of OAE 1b caused almost instantaneous warming of the atmosphere on the order of 0.3 °C followed by a longer (~45,000 yr) period of ~0.8 °C cooling. The marine records from DSDP Site 545 support that these moderate swings in global climate had immediate consequences for African continental supply of mineral matter and nutrients (phosphorous), subsequent oxygen availability, and organic carbon burial in the eastern subtropical Atlantic, however, without turning the ocean anoxic. The match between modelling results and stratigraphic isotopic data support previous studies [summarized in Jenkyns 2003, doi:10.1098/rsta.2003.1240] in that methane emission from marine hydrates, albeit moderate in dimension, may have been the trigger for OAE 1b, though we can not finally rule out alternative mechanisms. Following the hydrate mechanism a total of 1.15 * 10**18 g methane carbon (delta13C=-60 ?), equivalent to about 10% to the total modern gas hydrate inventory, generated the delta13Ccarb profile recorded in the section. Modelling suggests a combination of moderate-scale methane pulses supplemented by continuous methane emission at elevated levels over ~25,000 yr. The proposed mechanism, though difficult to finally confirm in the geological past, is arguably more likely to occur in a warmer world and apparently perturbs global climate and ocean chemistry almost instantaneously. This study shows that, once set-off, this mechanism can maintain Earth's climate in a perturbed mode over geological time leading to pronounced changes in regional climate.
Resumo:
Although wildfire plays an important role in maintaining biodiversity in many ecosystems, fire management to protect human assets is often carried out by different agencies than those tasked for conserving biodiversity. In fact, fire risk reduction and biodiversity conservation are often viewed as competing objectives. Here we explored the role of management through private land conservation and asked whether we could identify private land acquisition strategies that fulfill the mutual objectives of biodiversity conservation and fire risk reduction, or whether the maximization of one objective comes at a detriment to the other. Using a fixed budget and number of homes slated for development, we simulated 20 years of housing growth under alternative conservation selection strategies, and then projected the mean risk of fires destroying structures and the area and configuration of important habitat types in San Diego County, California, USA. We found clear differences in both fire risk projections and biodiversity impacts based on the way conservation lands are prioritized for selection, but these differences were split between two distinct groupings. If no conservation lands were purchased, or if purchases were prioritized based on cost or likelihood of development, both the projected fire risk and biodiversity impacts were much higher than if conservation lands were purchased in areas with high fire hazard or high species richness. Thus, conserving land focused on either of the two objectives resulted in nearly equivalent mutual benefits for both. These benefits not only resulted from preventing development in sensitive areas, but they were also due to the different housing patterns and arrangements that occurred as development was displaced from those areas. Although biodiversity conflicts may still arise using other fire management strategies, this study shows that mutual objectives can be attained through land-use planning in this region. These results likely generalize to any place where high species richness overlaps with hazardous wildland vegetation.
Resumo:
Cette thèse propose de développer des mécanismes déployables pour applications spatiales ainsi que des modes d’actionnement permettant leur déploiement et le contrôle de l’orientation en orbite de l’engin spatial les supportant. L’objectif étant de permettre le déploiement de surfaces larges pour des panneaux solaires, coupoles de télécommunication ou sections de station spatiale, une géométrie plane simple en triangle est retenue afin de pouvoir être assemblée en différents types de surfaces. Les configurations à membrures rigides proposées dans la littérature pour le déploiement de solides symétriques sont optimisées et adaptées à l’expansion d’une géométrie ouverte, telle une coupole. L’optimisation permet d’atteindre un ratio d’expansion plan pour une seule unité de plus de 5, mais présente des instabilités lors de l’actionnement d’un prototype. Le principe de transmission du mouvement d’un étage à l’autre du mécanisme est revu afin de diminuer la sensibilité des performances du mécanisme à la géométrie de ses membrures internes. Le nouveau modèle, basé sur des courroies crantées, permet d’atteindre des ratios d’expansion plans supérieurs à 20 dans certaines configurations. L’effet des principaux facteurs géométriques de conception est étudié afin d’obtenir une relation simple d’optimisation du mécanisme plan pour adapter ce dernier à différents contextes d’applications. La géométrie identique des faces triangulaires de chaque surface déployée permet aussi l’empilement de ces faces pour augmenter la compacité du mécanisme. Une articulation spécialisée est conçue afin de permettre le dépliage des faces puis leur déploiement successivement. Le déploiement de grandes surfaces ne se fait pas sans influencer lourdement l’orientation et potentiellement la trajectoire de l’engin spatial, aussi, différentes stratégies de contrôle de l’orientation novatrices sont proposées. Afin de tirer profit d’une grande surface, l’actionnement par masses ponctuelles en périphérie du mécanisme est présentée, ses équations dynamiques sont dérivées et simulées pour en observer les performances. Celles-ci démontrent le potentiel de cette stratégie de réorientation, sans obstruction de l’espace central du satellite de base, mais les performances restent en deçà de l’effet d’une roue d’inertie de masse équivalente. Une stratégie d’actionnement redondant par roue d’inertie est alors présentée pour différents niveaux de complexité de mécanismes dont toutes les articulations sont passives, c’est-à-dire non actionnées. Un mécanisme à quatre barres plan est simulé en boucle fermée avec un contrôleur simple pour valider le contrôle d’un mécanisme ciseau commun. Ces résultats sont étendus à la dérivation des équations dynamiques d’un mécanisme sphérique à quatre barres, qui démontre le potentiel de l’actionnement par roue d’inertie pour le contrôle de la configuration et de l’orientation spatiale d’un tel mécanisme. Un prototype à deux corps ayant chacun une roue d’inertie et une seule articulation passive les reliant est réalisé et contrôlé grâce à un suivi par caméra des modules. Le banc d’essai est détaillé, ainsi que les défis que l’élimination des forces externes ont représenté dans sa conception. Les résultats montrent que le système est contrôlable en orientation et en configuration. La thèse se termine par une étude de cas pour l’application des principaux systèmes développés dans cette recherche. La collecte de débris orbitaux de petite et moyenne taille est présentée comme un problème n’ayant pas encore eu de solution adéquate et posant un réel danger aux missions spatiales à venir. L’unité déployable triangulaire entraînée par courroies est dupliquée de manière à former une coupole de plusieurs centaines de mètres de diamètre et est proposée comme solution pour capturer et ralentir ces catégories de débris. Les paramètres d’une mission à cette fin sont détaillés, ainsi que le potentiel de réorientation que les roues d’inertie permettent en plus du contrôle de son déploiement. Près de 2000 débris pourraient être retirés en moins d’un an en orbite basse à 819 km d’altitude.
Resumo:
Görgeyite, K2Ca5(SO4)6··H2O, is a very rare monoclinic double salt found in evaporites related to the slightly more common mineral syngenite. At 1 atmosphere with increasing external temperature from 25 to 150 °C, the following succession of minerals was formed: first gypsum and K2O, followed at 100 °C by görgeyite. Changes in concentration at 150 °C due to evaporation resulted in the formation of syngenite and finally arcanite. Under hydrothermal conditions, the succession is syngenite at 50 °C, followed by görgyeite at 100 and 150 °C. Increasing the synthesis time at 100 °C and 1 atmosphere showed that initially gypsum was formed, later being replaced by görgeyite. Finally görgeyite was replaced by syngenite, indicating that görgeyite is a metastable phase under these conditions. Under hydrothermal conditions, syngenite plus a small amount of gypsum was formed, after two days being replaced by görgeyite. No further changes were observed with increasing time. Pure görgeyite showed elongated crystals approximately 500 to 1000 µ m in length. The infrared and Raman spectra are mainly showing the vibrational modes of the sulfate groups and the crystal water (structural water). Water is characterized by OH-stretching modes at 3526 and 3577 cm–1 , OH-bending modes at 1615 and 1647 cm–1 , and an OH-libration mode at 876 cm–1 . The sulfate 1 mode is weak in the infrared but showed strong bands at 1005 and 1013 cm–1 in the Raman spectrum. The 2 mode also showed strong bands in the Raman spectrum at 433, 440, 457, and 480 cm–1 . The 3 mode is characterized by a complex set of bands in both infrared and Raman spectra around 1150 cm–1 , whereas 4 is found at 650 cm–1.