315 resultados para Laminate veneer


Relevância:

10.00% 10.00%

Publicador:

Resumo:

To use profilometry to assess the margin surface profile of all-ceramic crowns (ACC’s) at try-in and 1-week after cementation with dual-cured resin (DC, RelyX ARC, 3 M ESPE, St. Paul, MN, USA), self-adhesive dual-cured resin (SADC, RelyX Unicem, 3 M ESPE), light-cured resin (LC, RelyX Veneer, 3 M ESPE) or chemically cured resin-modified glass ionomer (RMGI, RelyX Luting Plus, 3 M ESPE) luting cement. Methods: Forty, sound, extracted, human, premolar teeth underwent a standardised preparation for ACC’s. IPS Empress (Ivoclar-Vivadent, Liechtenstein) crowns of standard dimensions were fabricated and 10 luted with each cement and stored in water for 7 days. Three groups of serial profiles were taken, the first of the tooth preparation, the second of the crown margins at try-in and lastly of the crown margins after cementation and 7 days water storage. Results: There were no significant differences in the crown margin surface profile between the four cement groups at try-in. The change in crown margin position between try-in and post-cementation was significantly greater for DC than for LC and RMGI. SADC was not significantly different to the other cements. There were no significant differences in the crown margin extensions between the four cement groups, however most of the IPS Empress ACC’s in this study were underextended but this was not statistically significant. Conclusions: IPS Empress ACC’s seated more fully with LC and RMGI than with DC cement

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For Variable Stiffness (VS) composites with steered curvilinear tow paths, the fiber orientation angle varies continuously throughout the laminate, and is not required to be straight, parallel and uniform within each ply as in conventional composite laminates. Hence, the thermal properties (conduction), as well as the structural stiffness and strength, vary as functions of location in the laminate, and the associated composite structure is often called a “variable stiffness” composite structure. The steered fibers lead not only to the alteration of mechanical load paths, but also to the alteration of thermal paths that may
result in favorable temperature distributions within the laminate and improve the laminate performance. Evaluation of VS laminate performance under thermal loading is the focus of this chapter. Thermal performance evaluations require experimental and numerical analysis of VS laminates under different processing and loading conditions. One of the advantages of using composite materials in many applications is the tailoring capability of the laminate,
not only during the design phase but also for manufacturing. Heat transfer through variable conduction and chemical reaction (degree of cure) occurring during manufacturing (curing) plays an important role in the final thermal and mechanical performance, and shape of composite structures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Analysis of non-traditional Variable Stiffness (VS) laminates, obtained by steering the fiber orientation as a spatial function of location, have shown to improve buckling load carrying capacity of flat rectangular panels under axial compressive loads. In some cases the buckling load of simply supported panels doubled compared to the best conventional laminate with straight fibers. Two distinct cases of stiffness variation, one due to fiber orientation variation in the direction of the loading, and the other one perpendicular to the loading direction, were identified as possible contributors to the buckling load improvements. In the first case, the increase was attributed to the favorable distribution of the transverse in-plane stresses over the panel platform. In the second case, a higher degree of improvement was obtained due to the re-distribution of the applied in-plane loads. Experimental results, however, showed substantially higher levels of buckling load improvements compared with theoretical predictions. The additional improvement was determined to be due to residual stresses introduced during curing of the laminates. The present paper provides a simplified thermomechanical analysis of residual stress state of variable stiffness laminates. Systematic parametric analyses of both cases of fiber orientation variations show that, indeed much higher buckling loads could result from the residual stresses present in such laminates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A genetic algorithm (GA) was adopted to optimise the response of a composite laminate subject to impact. Two different impact scenarios are presented: low-velocity impact of a slender laminated strip and high-velocity impact of a rectangular plate by a spherical impactor. In these cases, the GA's objective was to, respectively, minimise the peak deflection and minimise penetration by varying the ply angles.

The GA was coupled to a commercial finite-element (FE) package LS DYNA to perform the impact analyses. A comparison with a commercial optimisation package, LS OPT, was also made. The results showed that the GA was a robust, capable optimisation tool that produced near optimal designs, and performed well with respect to LS OPT for the more complex high-velocity impact scenario tested.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents an analytical model for the prediction of the elastic behaviour of plain-weave fabric composites. The fabric is a hybrid plain-weave with different materials and undulations in the warp and weft directions. The derivation of the effective material properties is based on classical laminate theory (CLT).

The theoretical predictions have been compared with experimental results and predictions using alternative models available in the literature. Composite laminates were manufactured using the resin infusion under flexible tooling (RIFT) process and tested under tension and in-plane shear loading to validate the model. A good correlation between theoretical and experimental results for the prediction of in-plane properties was obtained. The limitations of the existing theoretical models based on classical laminate theory (CLT) for predicting the out-of-plane mechanical properties are presented and discussed. 

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A numerical and experimental investigation on the mode-I intralaminar toughness of a hybrid plain weave composite laminate manufactured using resin infusion under flexible tooling (RIFT) process is presented in this paper. The pre-cracked geometries consisted of overheight compact tension (OCT), double edge notch (DEN) and centrally cracked four-point-bending (4PBT) test specimens. The position as well as the strain field ahead of the crack tip during the loading stage was determined using a digital speckle photogrammetry system. The limitation on the applicability of the standard data reduction schemes for the determination of intralaminar toughness of composite materials is presented and discussed. A methodology based on the numerical evaluation of the strain energy release rate using the J-integral method is proposed to derive new geometric correction functions for the determination of the stress intensity factor for composites. The method accounts for material anisotropy and finite specimen dimension effects regardless of the geometry. The approach has been validated for alternative non-standard specimen geometries. A comparison between different methods currently available for computing the intralaminar fracture toughness in composite laminates is presented and a good agreement between numerical and experimental results using the proposed methodology was obtained. 

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The postbuckling behaviour of a panel with blade-stiffeners incorporating tapered flanges was experimentally investigated. A new failure mechanism was identified for this particular type of stiffener. Failure was initiated by mid-plane delamination at the free edge of the postbuckled stiffener web at a node-line. This was consistent with an interlaminar shear stress failure and was calculated from strain gauge measurements using an approximate analysis based on lamination theory and incorporating edge effects. The critical shear stress was found to agree well with the shear strength obtained from a three-point bending test of the web laminate

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The formulation of a 3D composite element and its use in a mixed-mode fracture mechanics example is presented. This element, like a conventional 3D finite element, has three degrees of freedom per node although, like a plate element, the strains are defined in the local directions of the mid-plane surface. The stress-strain property matrix of this element was modified to decouple the stresses in the local mid-plane and the strains normal to this plane thus preventing the element from being too stiff in bending. A main advantage of this formulation is the ability to model a laminate with a single 3D element. The motivation behind this work was to improve the computational efficiency associated with the calculation of strain energy release rates in laminated structures. A comparison of mixed-mode results using different elements of an in-house finite element package are presented. Good agreement was achieved between the results obtained using the new element and coventional higher-order elements

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multiscale micro-mechanics theory is extensively used for the prediction of the material response and damage analysis of unidirectional lamina using a representative volume element (RVE). Th is paper presents a RVE-based approach to characterize the materi al response of a multi-fibre cross-ply laminate considering the effect of matrix damage and fibre-matrix interfacial strength. The framework of the homogenization theory for periodic media has been used for the analysis of a 'multi-fibre multi-layer representative volume element' (M2 RVE) representing cross-ply laminate. The non-homogeneous stress-strain fields within the M2RVE are related to the average stresses and strains by using Gauss theorem and the Hill-Mandal strain energy equivalence principle. The interfacial bonding strength affects the in-plane shear stress-strain response significantl y. The material response predicted by M2 RVE is in good agreement with the experimental results available in the literature. The maximum difference between the shear stress predicted using M2 RVE and the experimental results is ~15% for the bonding strength of 30MPa at the strain value of 1.1%

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reports on a design study assessing the impact of laminate manufacturing constraints on the structural performance and weight of composite stiffened panels. The study demonstrates that maximizing ply continuity results in weight penalties, while various geometric constraints related to manufacture and repair can be accommodated without significant weight penalties, potentially generating robust flexible designs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel approach for introducing aligned multi-walled carbon nanotubes (MWCNTs) in a carbon-fibre composite pre-impregnated (prepreg) laminate, to improve the through-thickness fracture toughness, is presented. Carbon nanotube (CNT) 'forests' were grown on a silicon substrate with a thermal oxide layer, using a chemical vapour deposition (CVD) process. The forests were then transferred to a pre-cured laminate interface, using a combination of pressure and heat, while maintaining through-thickness CNT alignment. Standard Mode I and four-point bend end-notched flexure Mode II tests were undertaken on a set of specimens and compared with pristine specimens. Mode I fracture toughness for T700/M21 laminates was improved by an average of 31% while for T700/SE84LV specimens, an improvement of 61% was observed. Only T700/M21 specimens were tested in Mode II which yielded an average fracture toughness improvement of 161%. Scanning Electron Microscopy (SEM) showed good wetting of the CNT forest as well as evidence of penetration of the forest into the adjacent plies. © 2013 Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A phenomenology of distributed passive intermodulation generation in coplanar waveguide transmission line is presented. The theoretical analysis is based upon the generalised nonlinear transmission line model, which accounts for the coupling of two propagating modes. The case of weak substrate nonlinearity is considered and the model is given qualitative verification through the mapping of passive intermodulation products generated in coplanar waveguide fabricated on a commercial laminate. Implications for future research are discussed. © 2012 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

More than 200 known diseases are transmitted via foods or food products. In the United States, food-borne diseases are responsible for 76 million cases of illness, 32,500 cases of hospitalisation and 5000 cases of death yearly. The ongoing increase in worldwide trade in livestock, food, and food products in combination with increase in human mobility (business- and leisure travel, emigration etc.) will increase the risk of emergence and spreading of such pathogens. There is therefore an urgent need for development of rapid, efficient and reliable methods for detection and identification of such pathogens.

Microchipfabrication has had a major impact on electronics and is expected to have an equally pronounced effect on life sciences. By combining micro-fluidics with micromechanics, micro-optics, and microelectronics, systems can be realized to perform complete chemical or biochemical analyses. These socalled ’Lab-on-a-Chip’ will completely change the face of laboratories in the future where smaller, fully automated devices will be able to perform assays faster, more accurately, and at a lower cost than equipment of today. A general introduction of food safety and applied micro-nanotechnology in life sciences will be given. In addition, examples of DNA micro arrays, micro fabricated integrated PCR chips and total integrated lab-on-achip systems from different National and EU research projects being carried out at the Laboratory of Applied Micro- Nanotechnology (LAMINATE) group at the National Veterinary Institute (DTU-Vet) Technical University of Denmark and the BioLabchip group at the Department of Micro and Nanotechnology (DTU-Nanotech), Technical University of Denmark (DTU), Ikerlan-IK4 (Spain) and other 16 partners from different European countries will be presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Considering the development of aerospace composite components, designing for reduced manufacturing layup cost and structural complexity is increasingly important. While the advantage of composite materials is the ability to tailor designs to various structural loads for minimum mass, the challenge is obtaining a design that is manufacturable and minimizes local ply incompatibility. The focus of the presented research is understanding how the relationships between mass, manufacturability and design complexity, under realistic loads and design requirements, can be affected by enforcing ply continuity in the design process. Presented are a series of sizing case studies on an upper wing cover, designed using conventional analyses and the tabular laminate design process. Introducing skin ply continuity constraints can generate skin designs with minimal ply discontinuities, fewer ply drops and larger ply areas than designs not constrained for continuity. However, the reduced design freedom associated with the addition of these constraints results in a weight penalty over the total wing cover. Perhaps more interestingly, when considering manual hand layup the reduced design complexity is not translated into a reduced recurring manufacturing cost. In contrast, heavier wing cover designs appear to take more time to layup regardless of the laminate design complexity. © 2012 AIAA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: This systematic review aimed to report and explore the survival of dental veneers constructed from non-feldspathic porcelain over 5 and 10 years.

MATERIALS AND METHODS: A total of 4,294 articles were identified through a systematic search involving all databases in the Cochrane Library, MEDLINE (OVID), EMBASE, Web of Knowledge, specific journals (hand-search), conference proceedings, clinical trials registers, and collegiate contacts. Articles, abstracts, and gray literature were sought by two independent researchers. There were no language limitations. One hundred sixteen studies were identified for full-text assessment, with 10 included in the analysis (5 qualitative, 5 quantitative). Study characteristics and survival (Kaplan-Meier estimated cumulative survival and 95% confidence interval [CI]) were extracted or recalculated. A failed veneer was one which required an intervention that disrupted the original marginal integrity, had been partially or completely lost, or had lost retention more than twice. A meta-analysis and sensitivity analysis of Empress veneers was completed, with an assessment of statistical heterogeneity and publication bias. Clinical heterogeneity was explored for results of all veneering materials from included studies.

RESULTS: Within the 10 studies, veneers were fabricated with IPS Empress, IPS Empress 2, Cerinate, and Cerec computer-aided design/computer-assisted manufacture (CAD/CAM) materials VITA Mark I, VITA Mark II, Ivoclar ProCad. The meta-analysis showed the pooled estimate for Empress veneers to be 92.4% (95% CI: 89.8% to 95.0%) for 5-year survival and 66% to 94% (95% CI: 55% to 99%) for 10 years. Data regarding other non-feldspathic porcelain materials were lacking, with only a single study each reporting outcomes for Empress 2, Cerinate, and various Cerec porcelains over 5 years. The sensitivity analysis showed data from one study had an influencing and stabilizing effect on the 5-year pooled estimate.

CONCLUSION: The long-term outcome (> 5 years) of non-feldspathic porcelain veneers is sparsely reported in the literature. This systematic review indicates that the 5-year cumulative estimated survival for etchable non-feldspathic porcelain veneers is over 90%. Outcomes may prove clinically acceptable with time, but evidence remains lacking and the use of these materials for veneers remains experimental.