927 resultados para LIQUID-CRYSTAL MIXTURES


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A description is given of experimental investigations in which free electromechanical oscillations are obtained for the first time in ferroelectric liquid crystals. © 1997 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The flexoelectric behaviour of a hypertwisted chiral nematic bimesogenic liquid crystal is presented. Through detailed electro-optic measurements, with particular emphasis on the switching properties, we demonstrate remarkably high optical axis tilt angles. The material studied possessed a room temperature nematic phase and aligned easily on cooling under the application of a moderate electric field. Switching times of the order of 500 μs and contrast ratios of 90:1 are readily achieved. The tilt angles, measured using the rotating analyser technique, were found to be practically temperature independent and linear with the applied field. Tilt angles of 22.5° were obtained with moderate applied fields of 9.4 V/μm whilst fields of 25 V/μm yielded tilt angles of 45°. We believe these are the highest tilt angles ever recorded for such fields. © 2001 OPA (Overseas Publishers Association) N.V. Published by license under the Gordon and Breach Science Publishers imprint, a member of the Taylor & Francis Group.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Owing to fundamental reasons of symmetry, liquid crystals are soft materials. This softness allows long length-scales, large susceptibilities and the existence of modulated phases, which respond readily to external fields. Liquid crystals with such phases are tunable, self-assembled, photonic band gap materials; they offer exciting opportunities both in basic science and in technology. Since the density of photon states is suppressed in the stop band and is enhanced at the band edges, these materials may be used as switchable filters or as mirrorless lasers. Disordered periodic liquid crystal structures can show random lasing. We highlight recent advances in this rapidly growing area, and discuss future prospects in emerging liquid crystal materials. Liquid crystal elastomers and orientationally ordered nanoparticle assemblies are of particular interest. © 2006 The Royal Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we examine the phenomenon of random lasing from the smectic A liquid crystal phase. We summarise our results to date on random lasing from the smectic A phase including the ability to control the output from the sample using applied electric fields. In addition, diffuse random lasing is demonstrated from the electrohydrodynamic instabilities of a smectic A liquid crystal phase that has been doped with a low concentration of ionic impurities. Using a siloxane-based liquid crystal doped with ionic impurities and a laser dye, nonresonant random laser emission is observed from the highly scattering texture of the smectic A phase which is stable in zero-field. With the application of a low frequency alternating current electric field, turbulence is induced due to motion of the ions. This is accompanied by a decrease in the emission linewidth and an increase in the intensity of the laser emission. The benefit in this case is that a field is not required to maintain the texture as the scattering and homeotropic states are both stable in zero field. This offers a lower power consumption alternative to the electric-field induced static scattering sample.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we review our recent experimental work on coherent and blue phase liquid crystal lasers.We will present results on thin-film photonic band edge lasing devices using dye-doped low molar mass liquid crystals in self-organised chiral nematic and blue phases. We show that high Q-factor lasers can be achieved in these materials and demonstrate that a single mode output with a very narrow line width can be readily achievable in well-aligned mono-domain samples. Further, we have found that the performance of the laser, i.e. the slope efficiency and the excitation threshold, are dependent upon the physical parameters of the low molar mass chiral nematic liquid crystals. Specifically, slope efficiencies greater than 60% could be achieved depending upon the materials used and the device geometry employed. We will discuss the important parameters of the liquid crystal host/dye guest materials and device configuration that are needed to achieve such high slope efficiencies. Further we demonstrate how the wavelength of the laser can be tuned using an in-plane electric field in a direction perpendicular to the helix axis via a flexoelectric mechanism as well as thermally using thermochromic effects. We will then briefly outline data on room temperature blue phase lasers and further show how liquid crystal/lenslet arrays have been used to demonstrate 2D laser emission of any desired wavelength. Finally, we present preliminary data on LED/incoherent pumping of RG liquid crystal lasers leading to a continuous wave output. © 2009 SPIE.