992 resultados para LIGAND-FREE PALLADIUM
Resumo:
Der Free Fatty Acid Receptor 1 (FFAR1) ist ein G-Protein gekoppelter Rezeptor, welcher neben einer hohen Expression im Gehirn auch eine verstärkte Expressionsrate auf den β-Zellen des Pankreas aufweist. Diese Expressionsmuster machen ihn zu einem idealen Target für die Visualisierung der sogenannten β-Zell-Masse mittels molekularer bildgebender Verfahren wie der PET. Eine Entwicklung geeigneter Radiotracer für die β-Zell-Bildgebung würde sowohl für die Diagnostik als auch für die Therapie von Typ-1- und Typ-2-Diabetes ein wertvolles Hilfsmittel darstellen.rnAufbauend auf einem von Sasaki et al. publiziertem Agonisten mit einem vielversprechendem EC50-Wert von 5,7 nM wurden dieser Agonist und zwei weitere darauf basierende 19F-substituierte Moleküle als Referenzverbindungen synthetisiert (DZ 1-3). Für die 18F-Markierung der Moleküle DZ 2 und DZ 3 wurden die entsprechenden Markierungsvorläufer (MV 1-3) synthetisiert und anschließend die Reaktionsparameter hinsichtlich Temperatur, Lösungsmittel, Basensystem und Reaktionszeit für die nukleophile n.c.a. 18F-Fluorierung optimiert. Die abschließende Entschützung zum fertigen Radiotracer wurde mit NaOH-Lösung durchgeführt und die Tracer injektionsfertig in isotonischer NaCl-Lösung mit radiochemischen Ausbeuten von 26,9 % ([18F]DZ 2) und 39 % ([18F]DZ 3) erhalten.rnZusätzlich wurde ein Chelator zur 68Ga-Markierung an den Liganden gekoppelt (Verb. 46) und die Markierungsparameter optimiert. Nach erfolgter Markierung mit 95 % radiochemischer Ausbeute, wurde der Tracer abgetrennt und in vitro Stabilitätsstudien durchgeführt. Diese zeigten eine Stabilität von mehr als 90 % über 120 min in sowohl humanem Serum (37 °C) als auch isotonischer NaCl-Lösung.rnMit einem ebenfalls synthetisierten fluoreszenzmarkierten Derivat des Liganden (Verb. 43) wurden erste LSM-Bilder an sowohl Langerhansschen Inseln als auch FFAR1-tragenden RIN-M Zellen durchgeführt, welche einen vielversprechenden Uptake des neuen Liganden in die Zellen zeigen. Weitere Untersuchungen und biologische Evaluierungen stehen noch aus. Mit den Referenzsubstanzen wurden zusätzlich Vitalitätsstudien an Langerhansschen Inseln durchgeführt, um einen negativen toxischen Einfluss auszuschließen.rn
Resumo:
The explorative coordination chemistry of the bridging ligand TTF-PPB is presented. Its strong binding ability to Co(II) and then to Ni(II) or Cu(II) in the presence of hexafluoroacetylacetonate (hfac(-)), forming new mono-and dinuclear complexes 1-3, is described. X-ray crystallographic studies have been conducted in the case of the free ligand TTF-PPB as well as its complexes [Co(TTF-PPB)(hfac)(2)] (1) and [Co(hfac)(2)(mu-TTF-PPB)Ni(hfac)(2)] (2). Each metal ion is bonded to two bidentate hfac-anions through their oxygen atoms and two nitrogen atoms of the PPB moiety with a distorted octahedral coordination geometry. Specifically, nitrogen donor atoms of TTF-PPB adopt a cis-coordination but not in the equatorial plane, which is quite rare. Electronic absorption, photoinduced intraligand charge transfer ((1)ILCT), and electrochemical behaviour of 1-3 have been investigated. UV-Vis spectroscopy shows very strong bands in the UV region consistent with ligand centred pi-pi* transitions and an intense broad band in the visible region corresponding to a spin-allowed pi-pi* (1)ILCT transition. Upon coordination, the (1)ILCT band is bathochromically shifted by 3100, 6100 and 5900 cm(-1) on going from 1 to 3. The electrochemical studies reveal that all of them undergo two reversible oxidation and one reversible reduction processes, ascribed to the successive oxidations of the TTF moiety and the reduction of the PPB unit, respectively.
Resumo:
A general, two-step highly efficient synthesis of 1,2-diaryl-, 1,2,3-triaryl- and 1,2,3,4-tetraarylbenzenes from simple stitching of alpha-oxo-ketene-S,S-acetals and active methylene compounds via a ‘lactone intermediate’ is described. This procedure offers easy access to highly functionalized arylated-benzenes containing sterically demanding groups in good to excellent yields. The novelty of the procedure lies in the fabrication of aromatic compounds with desired conformational flexibility along the molecular axis in a transition metal-free environment through easily accessible precursors. The crystal analysis of these arylated-benzene scaffolds showed that the peripheral aryl rings are arranged in propeller-like fashion with respect to the central benzene rings. Examination of the crystal packing in the structure of a 1,2,3,4-tetraarylbenzene 12c revealed a “N…pi interaction” between molecules related by a two-fold screw axis running in a direction. It is interesting that the repeat of the array of N…pi interaction around the axis of the 1,2,3,4-tetraarylbenzene 12c enforces the molecules in a helical pattern.
Resumo:
PLACENTAL URIC ACID TRANSPORTER GLUT9 IS MODULATED BY FREE IODINE Objectives: Materno-fetal transplacental transport is crucial for the fetal well-being. The altered expression of placental transport proteins under specific pathophysiological conditions may affect the intrauterine environment. Pre-eclampsia is often associated with high maternal uric acid serum levels. The regulation of the placental uric transport system and its transporter glucose transporter (GLUT)-9 are not fully understood yet. The aim of this study was to investigate the placental urate transport and to characterize its transporter GLUT9. Methods: In this study we used a transepithelial transport (Transwell®) model to assess uric acid transport activity. Electrophysiological techniques and radioactive ligand up-take assays were used to measure transport activity of GLUT9 expressed in Xenopus oocytes. Results: In the Transwell/model uric acid is transported across the BeWo choriocarcinoma cell monolayer with 530 pmol/min at the linear stage. We could successfully over-express GLUT9 using the Xenopus laevis oocytes expression system. Chloride modulates the urate transport system: interestingly replacing chloride with iodine resulted in a complete loss of urate transport activity.We determined the IC50 of iodine at 30uM concentration. In radioactive up-take experiments iodinehad noeffect on uric acid transport. Conclusions: In vitro the “materno-fetal” transport of uric acid is slow. This indicates that in vivo the child is protected from short-term fluctuations of maternal uric acid serum concentrations. The different results regarding iodine-mediated regulation of GLUT9 transport activity between electrophysiological and radioactive ligand uptake experiments may suggest that iodine does not directly inhibit uric acid transport, but changes the mode of up-take from an electrogenic to an electroneutral transport. GLUT9 is not an uric acid uniporter, there are more ions involved in the transport. This may allow regulating uric acid transport by the change from an active to a passive transport.
Resumo:
The dramatic poor survival of patients diagnosed with glioblastoma multiforme (GBM) is a reflection of the struggles that accompany traditional treatments. Thus, the development of molecular-based targeted therapies represents new windows for intervention. In this study, we hypothesized that we could select peptide-ligands that selectively target GBM based on the idea that the glioma microenvironment may induce or modify the expression of cell surface receptors that could be accessed by circulating peptides. To select the peptides we employed two distinct in vivo screenings. First, a random phage-displayed peptide library was injected into mice bearing intracranial tumors. Phage that bound to tumor were recovered and sequenced. We found that the tumor-derived phage CLSYKGRC, CNKVSTKC and CQSSREKC were recovered with the highest frequencies and used for subsequent targeting experiments. Second, the phage peptide library was injected into mice without tumors and phage were recovered from brain and sequenced. A phage-displayed peptide (CRTIGPSVC) with homology to transferrin (Tf) was selected and injected into brain tumor-bearing mice. Results showed that after 6 hours of circulation, the CLSYKGRC, CNKVSTKC and CQSSREKC-phage selectively targeted GBM vasculature. In contrast, Tf-like phage accumulated outside the tumor blood vessels in the cytoplasm of cells located within GBM, suggesting it was internalized in vivo. However, after short periods of circulation this phage was restricted to the tumor vasculature. Importantly, none of the selected phage targeted normal brain cells in animals bearing intracranial tumors. An affinity column coupled to the CNKVSTKC zpeptide was used to identify receptors from GBM. Using mass-spectrometry Vimentin, a marker of glial malignancy, was identified as a potential receptor. Other studies showed that the Tf-like phage bound selectively to Apo-Tf (iron free), with no binding to Holo-Tf (iron loaded) or to Tf receptor (TfR). However, the binding of Tf-like phage to glioma cells that express TfR increased in the presence of Apo-Tf. Thus, the Tf-like phage could indirectly target TfR using the endogenous Tf pathway. We propose that the novel peptides identified in this study could be conjugated to therapeutic or imaging agents for use GBM. ^
Resumo:
Despite multiple changes in the adjuvant chemotherapy regimens used to treat osteosarcoma (OS), the 2-year metastasis-free survival has remained at 65–70% for the past 10 years. Characterizing the molecular determinants that permit metastatic spread of tumor cells is a crucial element in developing new approaches for the treatment of osteosarcoma. Since OS metastasizes almost exclusively to the lung, an organ with constitutive Fas ligand (FasL) expression, we hypothesized that the expression of Fas (CD95, APO-1) by OS cells may play a role in the ability of these cells to form lung metastases. Fas expression was quantified in human SAOS-2 OS cells and selected variants (LM2, LM4, LM5, LM6, LM7). Using northern blot, FACS and RT-PCR analysis, low Fas expression was found to correlate with higher metastatic potential in these cell lines. The highly metastatic LM7 cell line was transfected with the full-length human Fas gene and injected into athymic nude mice. The median number of metastatic nodules per mouse fell from over 200 to 1.1 and the size of the nodules decreased from a range of 0.5–9.0 mm to less than 0.5 mm in the Fas-transfected cell line compared to the native LM7 cell line. Additionally, the subsequent incidence of lung metastases was lower in the Fas-expressing cell line. IL-12 was seen to upregulate Fas expression in the highly metastatic LM sublines in vitro. To visualize the effects of IL-12 in vivo, nude mice were injected with LM7 cells and treated biweekly for 4 weeks with Ad.mIL-12, saline control or Ad.βgal. Lung sections were analyzed via immunchistochemistry for Fas expression. A higher expression of Fas was found in tumors from mice receiving IL-12. To study the mechanism by which IL-12 upregulates Fas, LM7 cells were transfected with a luciferase reporter gene construct containing the full-length human fas promoter. Treatment with IL-12 increased luciferase activity. We therefore conclude that IL-12 influences the metastatic potential of OS cells by upregulating the fas promoter, resulting in increased cell surface Fas expression and susceptibility to Fas-induced cell death. ^
Resumo:
Selective inhibition of T cell costimulation using the B7-specific fusion protein CTLA4-Ig has been shown to induce long-term allograft survival in rodents. Antibodies preventing the interaction between CD40 and its T cell-based ligand CD154 (CD40L) have been shown in rodents to act synergistically with CTLA4-Ig. It has thus been hypothesized that these agents might be capable of inducing long-term acceptance of allografted tissues in primates. To test this hypothesis in a relevant preclinical model, CTLA4-Ig and the CD40L-specific monoclonal antibody 5C8 were tested in rhesus monkeys. Both agents effectively inhibited rhesus mixed lymphocyte reactions, but the combination was 100 times more effective than either drug alone. Renal allografts were transplanted into nephectomized rhesus monkeys shown to be disparate at major histocompatibility complex class I and class II loci. Control animals rejected in 5–8 days. Brief induction doses of CTLA4-Ig or 5C8 alone significantly prolonged rejection-free survival (20–98 days). Two of four animals treated with both agents experienced extended (>150 days) rejection-free allograft survival. Two animals treated with 5C8 alone and one animal treated with both 5C8 and CTLA4-Ig experienced late, biopsy-proven rejection, but a repeat course of their induction regimen successfully restored normal graft function. Neither drug affected peripheral T cell or B cell counts. There were no clinically evident side effects or rejections during treatment. We conclude that CTLA4-Ig and 5C8 can both prevent and reverse acute allograft rejection, significantly prolonging the survival of major histocompatibility complex-mismatched renal allografts in primates without the need for chronic immunosuppression.
Resumo:
The biotin-binding site of streptavidin was modified to alter its ligand-binding specificity. In natural streptavidin, the side chains of N23 and S27 make two of the three hydrogen bonds with the ureido oxygen of biotin. These two residues were mutated to severely weaken biotin binding while attempting to maintain the affinity for two biotin analogs, 2-iminobiotin and diaminobiotin. Redesigning of the biotin-binding site used the difference in local electrostatic charge distribution between biotin and these biotin analogs. Free energy calculations predicted that the introduction of a negative charge at the position of S27 plus the mutation N23A should disrupt two of the three hydrogen bonds between natural streptavidin and the ureido oxygen of biotin. In contrast, the imino hydrogen of 2-iminobiotin should form a hydrogen bond with the side chain of an acidic amino acid at position 27. This should reduce the biotin-binding affinity by approximately eight orders of magnitude, while leaving the affinities for these biotin analogs virtually unaffected. In good agreement with these predictions, a streptavidin mutant with the N23A and S27D substitutions binds 2-iminobiotin with an affinity (Ka) of 1 × 106 M−1, two orders of magnitude higher than that for biotin (1 × 104 M−1). In contrast, the binding affinity of this streptavidin mutant for diaminobiotin (2.7 × 104 M−1) was lower than predicted (2.9 × 105 M−1), suggesting the position of the diaminobiotin in the biotin-binding site was not accurately determined by modeling.
Resumo:
The polymeric Ig receptor (pIgR) transcytoses its ligand, dimeric IgA (dIgA), from the basolateral to the apical surface of epithelial cells. Although the pIgR is constitutively transcytosed in the absence of ligand, binding of dIgA stimulates transcytosis of the pIgR. We recently reported that dIgA binding to the pIgR induces translocation of protein kinase C, production of inositol triphosphate, and elevation of intracellular free calcium. We now report that dIgA binding causes rapid, transient tyrosine phosphorylation of several proteins, including phosphatidyl inositol-specific phospholipase C-γl. Protein tyrosine kinase inhibitors or deletion of the last 30 amino acids of pIgR cytoplasmic tail prevents IgA-stimulated protein tyrosine kinase activation, tyrosine phosphorylation of phospholipase C-γl, production of inositol triphosphate, and the stimulation of transcytosis by dIgA. Analysis of pIgR deletion mutants reveals that the same discrete portion of the cytoplasmic domain, residues 727–736 (but not the Tyr734), controls both the ability of pIgR to cause dIgA-induced tyrosine phosphorylation of the phospholipase C-γl and to undergo dIgA-stimulated transcytosis. In addition, dIgA transcytosis can be strongly stimulated by mimicking phospholipase C-γl activation. In combination with our previous results, we conclude that the protein tyrosine kinase(s) and phospholipase C-γl that are activated upon dIgA binding to the pIgR control dIgA-stimulated pIgR transcytosis.
Resumo:
Elevation of the neuropeptide corticotropin-releasing factor (CRF) in the brain is associated with a reduction of food intake and body weight gain in normal and obese animals. A protein that binds CRF and the related peptide, urocortin, with high affinity, CRF-binding protein (CRF-BP), may play a role in energy homeostasis by inactivating members of this peptide family in ingestive and metabolic regulatory brain regions. Intracerebroventricular administration in rats of the high-affinity CRF-BP ligand inhibitor, rat/human CRF (6-33), which dissociates CRF or urocortin from CRF-BP and increases endogenous brain levels of “free” CRF or urocortin significantly blunted exaggerated weight gain in Zucker obese subjects and in animals withdrawn from chronic nicotine. Chronic administration of CRF suppressed weight gain nonselectively by 60% in both Zucker obese and lean control rats, whereas CRF-BP ligand inhibitor treatment significantly reduced weight gain in obese subjects, without altering weight gain in lean control subjects. Nicotine abstinent subjects, but not nicotine-naive controls, experienced a 35% appetite suppression and a 25% weight gain reduction following acute and chronic administration, respectively, of CRF-BP ligand inhibitor. In marked contrast to the effects of a CRF-receptor agonist, the CRF-BP ligand inhibitor did not stimulate adrenocorticotropic hormone secretion or elevate heart rate and blood pressure. These results provide support for the hypothesis that the CRF-BP may function within the brain to limit selected actions of CRF and/or urocortin. Furthermore, CRF-BP may represent a novel and functionally selective target for the symptomatic treatment of excessive weight gain associated with obesity of multiple etiology.
Resumo:
We have obtained an experimental estimate of the free energy change associated with variations at the interface between protein subunits, a subject that has raised considerable interest since the concept of accessible surface area was introduced by Lee and Richards [Lee, B. & Richards, F. M. (1971) J. Mol. Biol. 55, 379–400]. We determined by analytical ultracentrifugation the dimer–tetramer equilibrium constant of five single and three double mutants of human Hb. One mutation is at the stationary α1β1 interface, and all of the others are at the sliding α1β2 interface where cleavage of the tetramer into dimers and ligand-linked allosteric changes are known to occur. A surprisingly good linear correlation between the change in the free energy of association of the mutants and the change in buried hydrophobic surface area was obtained, after corrections for the energetic cost of losing steric complementarity at the αβ dimer interface. The slope yields an interface stabilization free energy of −15 ± 1.2 cal/mol upon burial of 1 Å2 of hydrophobic surface, in very good agreement with the theoretical estimate given by Eisenberg and McLachlan [Eisenberg, D. & McLachlan, A. D. (1986) Nature (London) 319, 199–203].
Resumo:
Inositol 1,4,5-tris-phosphate (IP3) binding to its receptors (IP3R) in the endoplasmic reticulum (ER) activates Ca2+ release from the ER lumen to the cytoplasm, generating complex cytoplasmic Ca2+ concentration signals including temporal oscillations and propagating waves. IP3-mediated Ca2+ release is also controlled by cytoplasmic Ca2+ concentration with both positive and negative feedback. Single-channel properties of the IP3R in its native ER membrane were investigated by patch clamp electrophysiology of isolated Xenopus oocyte nuclei to determine the dependencies of IP3R on cytoplasmic Ca2+ and IP3 concentrations under rigorously defined conditions. Instead of the expected narrow bell-shaped cytoplasmic free Ca2+ concentration ([Ca2+]i) response centered at ≈300 nM–1 μM, the open probability remained elevated (≈0.8) in the presence of saturating levels (10 μM) of IP3, even as [Ca2+]i was raised to high concentrations, displaying two distinct types of functional Ca2+ binding sites: activating sites with half-maximal activating [Ca2+]i (Kact) of 210 nM and Hill coefficient (Hact) ≈2; and inhibitory sites with half-maximal inhibitory [Ca2+]i (Kinh) of 54 μM and Hill coefficient (Hinh) ≈4. Lowering IP3 concentration was without effect on Ca2+ activation parameters or Hinh, but decreased Kinh with a functional half-maximal activating IP3 concentration (KIP3) of 50 nM and Hill coefficient (HIP3) of 4 for IP3. These results demonstrate that Ca2+ is a true receptor agonist, whereas the sole function of IP3 is to relieve Ca2+ inhibition of IP3R. Allosteric tuning of Ca2+ inhibition by IP3 enables the individual IP3R Ca2+ channel to respond in a graded fashion, which has implications for localized and global cytoplasmic Ca2+ concentration signaling and quantal Ca2+ release.
Resumo:
Patterns in sequences of amino acid hydrophobic free energies predict secondary structures in proteins. In protein folding, matches in hydrophobic free energy statistical wavelengths appear to contribute to selective aggregation of secondary structures in “hydrophobic zippers.” In a similar setting, the use of Fourier analysis to characterize the dominant statistical wavelengths of peptide ligands’ and receptor proteins’ hydrophobic modes to predict such matches has been limited by the aliasing and end effects of short peptide lengths, as well as the broad-band, mode multiplicity of many of their frequency (power) spectra. In addition, the sequence locations of the matching modes are lost in this transformation. We make new use of three techniques to address these difficulties: (i) eigenfunction construction from the linear decomposition of the lagged covariance matrices of the ligands and receptors as hydrophobic free energy sequences; (ii) maximum entropy, complex poles power spectra, which select the dominant modes of the hydrophobic free energy sequences or their eigenfunctions; and (iii) discrete, best bases, trigonometric wavelet transformations, which confirm the dominant spectral frequencies of the eigenfunctions and locate them as (absolute valued) moduli in the peptide or receptor sequence. The leading eigenfunction of the covariance matrix of a transmembrane receptor sequence locates the same transmembrane segments seen in n-block-averaged hydropathy plots while leaving the remaining hydrophobic modes unsmoothed and available for further analyses as secondary eigenfunctions. In these receptor eigenfunctions, we find a set of statistical wavelength matches between peptide ligands and their G-protein and tyrosine kinase coupled receptors, ranging across examples from 13.10 amino acids in acid fibroblast growth factor to 2.18 residues in corticotropin releasing factor. We find that the wavelet-located receptor modes in the extracellular loops are compatible with studies of receptor chimeric exchanges and point mutations. A nonbinding corticotropin-releasing factor receptor mutant is shown to have lost the signatory mode common to the normal receptor and its ligand. Hydrophobic free energy eigenfunctions and their transformations offer new quantitative physical homologies in database searches for peptide-receptor matches.
Resumo:
A model based on the nonlinear Poisson-Boltzmann equation is used to study the electrostatic contribution to the binding free energy of a simple intercalating ligand, 3,8-diamino-6-phenylphenanthridine, to DNA. We find that the nonlinear Poisson-Boltzmann model accurately describes both the absolute magnitude of the pKa shift of 3,8-diamino-6-phenylphenanthridine observed upon intercalation and its variation with bulk salt concentration. Since the pKa shift is directly related to the total electrostatic binding free energy of the charged and neutral forms of the ligand, the accuracy of the calculations implies that the electrostatic contributions to binding are accurately predicted as well. Based on our results, we have developed a general physical description of the electrostatic contribution to ligand-DNA binding in which the electrostatic binding free energy is described as a balance between the coulombic attraction of a ligand to DNA and the disruption of solvent upon binding. Long-range coulombic forces associated with highly charged nucleic acids provide a strong driving force for the interaction of cationic ligands with DNA. These favorable electrostatic interactions are, however, largely compensated for by unfavorable changes in the solvation of both the ligand and the DNA upon binding. The formation of a ligand-DNA complex removes both charged and polar groups at the binding interface from pure solvent while it displaces salt from around the nucleic acid. As a result, the total electrostatic binding free energy is quite small. Consequently, nonpolar interactions, such as tight packing and hydrophobic forces, must play a significant role in ligand-DNA stability.
Resumo:
Aryl imidazol-1-ylsulfonates have been efficiently cross-coupled with aryl-, alkyl-, and silylacetylenes in neat water under copper-free conditions at 110 °C assisted by microwave irradiation. Using 0.5 mol% of an oxime palladacycle as precatalyst, 2-dicyclohexylphosphino-2′,6′-dimethoxybiphenyl (SPhos, 2 mol%) as ligand, hexadecyltrimethylammonium bromide (CTAB) as additive, and triethylamine (TEA) as base, a wide array of disubstituted alkynes has been prepared in good to high yields in only 30 min.