796 resultados para LIGAND INFLUENCES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conformational changes of channel activation: Five enhanced green fluorescent protein (EGFP) molecules (green cylinders) were integrated into the intracellular part of the homopentameric ionotropic 5-HT3 receptor. This allowed the detection of extracellular binding of fluorescent ligands (?) to EGFP by FRET, and also enabled the quantification of agonist-induced conformational changes in the intracellular region of the receptor by homo-FRET between EGFPs. The approach opens novel ways for probing receptor activation and functional screening of therapeutic compounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Unlike other tumor necrosis factor family members, the cytotoxic ligand tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)/Apo-2L contains an unpaired cysteine residue (Cys(230)) in its receptor-binding domain. Here we show that the biological activity of both soluble recombinant TRAIL and cell-associated, full-length TRAIL is critically dependent on the presence of Cys(230). Mutation of Cys(230) to alanine or serine strongly affected its ability to kill target cells. Binding to its receptors was decreased by at least 200-fold, and the stability of its trimeric structure was reduced. In recombinant TRAIL, Cys(230) was found engaged either in interchain disulfide bridge formation, resulting in poorly active TRAIL, or in the chelation of one zinc atom per TRAIL trimer in the active, pro-apoptotic form of TRAIL.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To study the adaptation of natural killer (NK) cells to their major histocompatibility complex (MHC) class I environment we have established a novel mouse model with mosaic expression of H-2D(d) using a Cre/loxP system. In these mice, we noticed that NK cells expressing the inhibitory receptor for D(d), Ly49A, were specifically underrepresented among cells with low D(d) levels. That was due to the acquisition of D(d) molecules by the Ly49A+ NK cells that have lost their D(d) transgene. The uptake of H-2D molecules via the Ly49A receptor was restricted to strong ligands of Ly49A. Surprisingly, when Ly49A+ NK cells were D(d+), uptake of the alternative ligand D(k) was not detectable. Similarly, one anti-Ly49A mAb (A1) bound inefficiently when Ly49A was expressed on D(d+) NK cells. Concomitantly, functional assays demonstrated a reduced capacity of Ly49A to inhibit H-2(b)D(d) as compared with H-2(b) NK cells, rendering Ly49A+ NK cells in D(d+) mice particularly reactive. Minor reductions of D(d) levels and/or increases of activating ligands on environmental cells may thus suffice to abrogate Ly49A-mediated NK cell inhibition. The mechanistic explanation for all these phenomena is likely the partial masking of Ly49A by D(d) on the same cell via a lateral binding site in the H-2D(d) molecule.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human Fas ligand (L) (CD95L) and tumor necrosis factor (TNF)-alpha undergo metalloproteinase-mediated proteolytic processing in their extracellular domains resulting in the release of soluble trimeric ligands (soluble [s]FasL, sTNF-alpha) which, in the case of sFasL, is thought to be implicated in diseases such as hepatitis and AIDS. Here we show that the processing of sFasL occurs between Ser126 and Leu127. The apoptotic-inducing capacity of naturally processed sFasL was reduced by >1,000-fold compared with membrane-bound FasL, and injection of high doses of recombinant sFasL in mice did not induce liver failure. However, soluble FasL retained its capacity to interact with Fas, and restoration of its cytotoxic activity was achieved both in vitro and in vivo with the addition of cross-linking antibodies. Similarly, the marginal apoptotic activity of recombinant soluble TNF-related apoptosis-inducing ligand (sTRAIL), another member of the TNF ligand family, was greatly increased upon cross-linking. These results indicate that the mere trimerization of the Fas and TRAIL receptors may not be sufficient to trigger death signals. Thus, the observation that sFasL is less cytotoxic than membrane-bound FasL may explain why in certain types of cancer, systemic tissue damage is not detected, even though the levels of circulating sFasL are high.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Parasitic infection is highly allergenic, and the present paper illustrates how parasites might disrupt the regulation of IgE synthesis, resulting in heightened Th-2 responses. The study of parasites, and dysregulation of the IgE ntwork, could in turn provide information relating to the aetiology of allergic diseases such as asthma and atopic dermatitis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The T-cell antigen receptor (TCR) exists in monomeric and nanoclustered forms independently of antigen binding. Although the clustering is involved in the regulation of T-cell sensitivity, it is unknown how the TCR nanoclusters form. We show that cholesterol is required for TCR nanoclustering in T cells and that this clustering enhances the avidity but not the affinity of the TCR-antigen interaction. Investigating the mechanism of the nanoclustering, we found that radioactive photocholesterol specifically binds to the TCRβ chain in vivo. In order to reduce the complexity of cellular membranes, we used a synthetic biology approach and reconstituted the TCR in liposomes of defined lipid composition. Both cholesterol and sphingomyelin were required for the formation of TCR dimers in phosphatidylcholine-containing large unilamellar vesicles. Further, the TCR was localized in the liquid disordered phase in giant unilamellar vesicles. We propose a model in which cholesterol and sphingomyelin binding to the TCRβ chain causes TCR dimerization. The lipid-induced TCR nanoclustering enhances the avidity to antigen and thus might be involved in enhanced sensitivity of memory compared with naive T cells. Our work contributes to the understanding of the function of specific nonannular lipid-membrane protein interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cell surface receptor Fas (Apo-1/CD95) and its ligand (FasL) are mediators of apoptosis that have been shown to be implicated in activation-induced death of mature T cells and in killing mediated by cytolytic T cells. The role of the Fas pathway in apoptosis associated with thymic selection events is, however, controversial. Although Fas and FasL are known to be expressed in the thymus, the nature and in vivo localization of FasL-expressing cells have not been determined. Using recently developed anti-FasL Abs in combination with in situ hybridization on tissue sections, we show in this work that FasL-expressing cells are present in the thymus, particularly within the medulla. FasL mRNA was detected readily in thymic stromal cell extracts, but not in isolated thymocytes. Moreover, immunohistochemical analysis of serial tissue sections stained with Abs against FasL in conjunction with epithelial and dendritic cell markers indicated that both thymic epithelial and dendritic cells express FasL in situ. The coexistence of FasL-expressing stromal cells and Fas-expressing thymocytes may have important implications for the role of the Fas pathway in apoptosis associated with thymic selection events.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Summary : The canonical Wnt signaling pathway plays key roles in the maintenance of self-renewing tissues, like the gut or the skin. In contrast, the role of this pathway in hematopoiesis remains poorly defined. Wnt ligands transmit signals through ß-catenin which activates gene transcription upon its association with Lymphoid Cell Enhancer/T Cell Factor (LEF/TCF). Currently, v-catenin is the only alternative factor known to transduce canonical Wnt signals. The ß-/γ-catenin bindiná domain in TCF-1 is required to partly rescue thymopoiesis and NK cell development in TCF-1-deficient mice. However, T cell development and hematopoiesis w-as normal in mice deficient of ß-catenin, or of γ-catenin. Surprisingly we found that hematopoiesis and thymopoiesis was also normal in the combined absence of ß- and γ-catenin. Reporter assays showed that double-deficient lymphocytes were still able to transduce canonical wnt signals. These data provided evidence that hematopoietic cells can transduce canonical Wnt signals in the combined absence of ß- and γ-catenin. There exist numerous TCF-1 isoforrns including those that harbor the N-terminal ß-/y-catenin binding domain or that contains a C-terminal CRARF domain whose role in vivo has not been previously tested. We found that the CRARF domain influences lymphocyte development in conjunction with the N-treminal ß-/γ-catenin binding. The presence of the two domains directs thymocytes to the CD8+ T cell lineage whereas NK cell development is abolished. Roles of the canonical Wnt/TCF-1 pathway for lymphocyte function have not been defined. We demonstrate that TCF-1 deficient CDBT T cells mount a normal primary response to viral infection but these T cells fail to expand upon restimulation. The failure of CD8+ T cells to respond to IL-2 during primary infection seems to account for this phenotype. Thus, TCF-1 is essential for programming functional CD8+ T cell memory. Collectively, these data provide significant new insights into the role of Wnt/TCF-1 pathway for lymphocyte development and function and suggest a novel mechanism of Wnt signal transuction in hematopoietic cells. Résumé : La voie de signalisation canonique Wnt joue un rôle prépondérant dans le renouvellement de tissus, comme l'intestin ou la peau. Son rôle dans l'hématopoïèse est quant à lui mal défini. Le ligand Wnt transmet le signal via la ß-catenin qui active la transcription de gènes cibles quand il est associé avec Lymphoid Cell Enhancer,~T Cell Factor (LEF/TCF). Actuellement, la γ-catenin est le seul autre facteur connu pouvant se substituer à la fonction de la ß-catenin. Un variant de TCF-1 contenant le domaine liant ß-/,~-catenin est capable de restaurer le développement des lymphocytes T et NK en l'absence de TCF-1. Cependant la thymopoïèse et l'hématopoïèse sont normales dans les souris déficientes pour la ß-catenin ou la γ-catenin. De façon surprenante, nous avons trouvé que l'hématopoïèse et le développement des lymphocytes sont normaux lors de l'absence combinée de ß-/γ-catenin. De plus, la transduction des signaux de la voie de signalisation Wnt est maintenue dans des lymphocytes déficients pour ß-/γ-catenin. Ces résultats démontrent que les cellules hématopoïétiques peuvent transmettre les signaux de la voie canonique Wnt lors de l'absence combinée de la ß et la γ -catenin. Il existe de nombreuses isofonnes de TCF-1, y compris certaines qui comprennent un domaine qui lie ß-/γ-catenin du côté N-terminus ou qui contiennent un domaine CRARF du côté C-terminus. Nous montrons ici que le domaine CRARF influence le développement des lymphocytes en conjonction avec le domaine liant ß-/γ-catenin. La présence des deux domaines dirige les thymocytes vers la lignée de cellules T CD8, alors que le développement des cellules NK est aboli. Au-delà de sa fonction sur le développement des lymphocytes, le rôle de la soie de signalisation canonique Wnt/TCF-1 lors d'une infection n'a pas été défini. Nous avons montré que les cellules T CD8, déficientes pour TCF-1, développent une réponse primaire normale à une infection virale, mais qu'elles ne s'accumulent pas après restimulation. L'incapacité des cellules TCD8 à répondre à l'IL-2 durant la réponse primaire peut expliquer ce phénotype. Ainsi; TCF-1 est essentiel pour la programmation de cellules T CD8 mémoires fonctionnelles. L'ensemble de ces résultats fournit de nouveaux aperçus du rôle de la voie de signalisation Wnt/TCF-1 pour le développement et la fonction des lymphocytes et suggèrent un nouveau mécanisme de transduction du signal Wnt dans les cellules hématopoïétiques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: Mutations in the ligand-binding domain (LBD) of NR2E3 cause recessively inherited enhanced short wavelength sensitive (S-) cone syndrome (ESCS), Goldmann-Favre syndrome (GFS) and clumped pigmentary retinal degeneration (CPRD). In addition to ligand binding, the LBD contains also essential amino acid sequences for the oligomerization of nuclear receptors. The aim of our studies is to characterize the impact of mutations in the LBD on receptor oligomerization and transcriptional activity of NR2E3. Methods: The different NR2E3 mutants were generated by QuickChange mutagenesis and analyzed in 293T-based transactivation studies and BRET2 (bioluminescence resonance electron transfer) assays. In silico homology modeling of mutant proteins was also performed using available crystallographic data of related nuclear receptors. Results: The mutants p.W234S, p.A256V, p.A256E, p.L263P, p.R309G, p.R311Q, p.R334G, p.L336P, p.L353V, p.R385P and p.M407K, all located in the LBD, showed impaired receptor dimerization at various degrees. Impaired repressor dimerization as assessed by BRET2 assays did not always correlate with impaired repressor function of NR2E3 as assessed by cell-based reporter assays. There were minor differences of transcriptional activity of mutant proteins on mouse S-opsin (opn1sw), mouse cone arrestin (arr3) and human cone arrestin, suggesting that the effect of LBD mutations was independent of the promoter context. Conclusions: Mutational analysis and homology modeling allowed the characterization of potential oligomerization interfaces of the NR2E3 LBD. Additionally, mutations in NR2E3 LBD may cause recessive retinal degenerations by different molecular mechanisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tumor growth is the result of deregulated tissue homeostasis which is maintained through the delicate balance of cell growth and apoptosis. One of the most efficient inducers of apoptosis is the death receptor Fas. We report here that oncogenic Ras (H-Ras) downregulates Fas expression and renders cells of fibroblastic and epitheloid origin resistant to Fas ligand-induced apoptosis. In Ras-transformed cells, Fas mRNA is absent. Inhibition of DNA methylation restores Fas expression. H-Ras signals via the PI 3-kinase pathway to downregulate Fas, suggesting that the known anti-apoptotic effect of the downstream PKB/Akt kinase may be mediated, at least in part, by the repression of Fas expression. Thus, the oncogenic potential of H-ras may reside on its capacity not only to promote cellular proliferation, but also to simultaneously inhibit Fas-triggered apoptosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Staphylococcal enterotoxin B (SEB) is a bacterial superantigen (SAg) that predominantly interacts with V(beta)8+ T cells. In vivo treatment of mice with SEB leads to an initial increase in the percentage of V(beta)8+ T cells, followed by a decrease in the numbers of these cells, eventually reaching lower levels than those found before treatment with the SAg. This decrease is due to apoptosis of the SEB-responding cells. In the present study, we use the distinct light scattering characteristics of apoptotic cells to characterize T cells that are being deleted in response to SEB in vivo. We show that dying, SEB-reactive T cells express high levels of Fas and Fas ligand (Fas-L), which are implicated in apoptotic cell death. In addition, the B cell marker B220 is upregulated on apoptotic cells. Moreover, we show that the generation of cells with an apoptotic phenotype is severely impaired in response to SEB in functional Fas-L-deficient mutant gld mice, confirming the role of the Fas pathway in SAg mediated peripheral deletion in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

TNFRSF13B encodes transmembrane activator and calcium modulator and cyclophilin ligand interactor (TACI), a B cell- specific tumor necrosis factor (TNF) receptor superfamily member. Both biallelic and monoallelic TNFRSF13B mutations were identified in patients with common variable immunodeficiency disorders. The genetic complexity and variable clinical presentation of TACI deficiency prompted us to evaluate the genetic, immunologic, and clinical condition in 50 individuals with TNFRSF13B alterations, following screening of 564 unrelated patients with hypogammaglobulinemia. We identified 13 new sequence variants. The most frequent TNFRSF13B variants (C104R and A181E; n=39; 6.9%) were also present in a heterozygous state in 2% of 675 controls. All patients with biallelic mutations had hypogammaglobulinemia and nearly all showed impaired binding to a proliferation-inducing ligand (APRIL). However, the majority (n=41; 82%) of the pa-tients carried monoallelic changes in TNFRSF13B. Presence of a heterozygous mutation was associated with antibody deficiency (P< .001, relative risk 3.6). Heterozygosity for the most common mutation, C104R, was associated with disease (P< .001, relative risk 4.2). Furthermore, heterozygosity for C104R was associated with low numbers of IgD(-)CD27(+) B cells (P= .019), benign lymphoproliferation (P< .001), and autoimmune complications (P= .001). These associations indicate that C104R heterozygosity increases the risk for common variable immunodeficiency disorders and influences clinical presentation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To study the role of CD8 beta in T cell function, we derived a CD8 alpha/beta-(CD8-/-) T cell hybridoma of the H-2Kd-restricted N9 cytotoxic T lymphocyte clone specific for a photoreactive derivative of the Plasmodium berghei circumsporozoite peptide PbCS 252-260. This hybridoma was transfected either with CD8 alpha alone or together with CD8 beta. All three hybridomas released interleukin 2 upon incubation with L cells expressing Kd-peptide derivative complexes, though CD8 alpha/beta cells did so more efficiently than CD8 alpha/alpha and especially CD8-/- cells. More strikingly, only CD8 alpha/beta cells were able to recognize a weak agonist peptide derivative variant. This recognition was abolished by Fab' fragments of the anti-Kd alpha 3 monoclonal antibody SF1-1.1.1 or substitution of Kd D-227 with K, both conditions known to impair CD8 coreceptor function. T cell receptor (TCR) photoaffinity labeling indicated that TCR-ligand binding on CD8 alpha/beta cells was approximately 5- and 20-fold more avid than on CD8 alpha/a and CD8-/- cells, respectively. SF1-1.1.1 Fab' or Kd mutation D227K reduced the TCR photoaffinity labeling on CD8 alpha/beta cells to approximately the same low levels observed on CD8-/- cells. These results indicate that CD8 alpha/beta is a more efficient coreceptor than CD8alpha/alpha, because it more avidly strengthens TCR-ligand binding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To study the interaction of T cell receptor with its ligand, a complex of a major histocompatibility complex molecule and a peptide, we derived H-2Kd-restricted cytolytic T lymphocyte clones from mice immunized with a Plasmodium berghei circumsporozoite peptide (PbCS) 252-260 (SYIPSAEKI) derivative containing photoreactive Nepsilon-[4-azidobenzoyl] lysine in place of Pro-255. This residue and Lys-259 were essential parts of the epitope recognized by these clones. Most of the clones expressed BV1S1A1 encoded beta chains along with specific complementary determining region (CDR) 3beta regions but diverse alpha chain sequences. Surprisingly, all T cell receptors were preferentially photoaffinity labeled on the alpha chain. For a representative T cell receptor, the photoaffinity labeled site was located in the Valpha C-strand. Computer modeling suggested the presence of a hydrophobic pocket, which is formed by parts of the Valpha/Jalpha C-, F-, and G-strands and adjacent CDR3alpha residues and structured to be able to avidly bind the photoreactive ligand side chain. We previously found that a T cell receptor specific for a PbCS peptide derivative containing this photoreactive side chain in position 259 similarly used a hydrophobic pocket located between the junctional CDR3 loops. We propose that this nonpolar domain in these locations allow T cell receptors to avidly and specifically bind epitopes containing non-peptidic side chains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Invariant Valpha14 (Valpha14i) NKT cells are a murine CD1d-dependent regulatory T cell subset characterized by a Valpha14-Jalpha18 rearrangement and expression of mostly Vbeta8.2 and Vbeta7. Whereas the TCR Vbeta domain influences the binding avidity of the Valpha14i TCR for CD1d-alpha-galactosylceramide complexes, with Vbeta8.2 conferring higher avidity binding than Vbeta7, a possible impact of the TCR Vbeta domain on Valpha14i NKT cell selection by endogenous ligands has not been studied. In this study, we show that thymic selection of Vbeta7(+), but not Vbeta8.2(+), Valpha14i NKT cells is favored in situations where endogenous ligand concentration or TCRalpha-chain avidity are suboptimal. Furthermore, thymic Vbeta7(+) Valpha14i NKT cells were preferentially selected in vitro in response to CD1d-dependent presentation of endogenous ligands or exogenously added self ligand isoglobotrihexosylceramide. Collectively, our data demonstrate that the TCR Vbeta domain influences the selection of Valpha14i NKT cells by endogenous ligands, presumably because Vbeta7 confers higher avidity binding.