636 resultados para LATTICES
Resumo:
This paper presents solutions of the NURISP VVER lattice benchmark using APOLLO2, TRIPOLI4 and COBAYA3 pin-by-pin. The main objective is to validate MOC based calculation schemes for pin-by-pin cross-section generation with APOLLO2 against TRIPOLI4 reference results. A specific objective is to test the APOLLO2 generated cross-sections and interface discontinuity factors in COBAYA3 pin-by-pin calculations with unstructured mesh. The VVER-1000 core consists of large hexagonal assemblies with 2mm inter-assembly water gaps which require the use of unstructured meshes in the pin-by-pin core simulators. The considered 2D benchmark problems include 19-pin clusters, fuel assemblies and 7-assembly clusters. APOLLO2 calculation schemes with the step characteristic method (MOC) and the higher-order Linear Surface MOC have been tested. The comparison of APOLLO2 vs.TRIPOLI4 results shows a very close agreement. The 3D lattice solver in COBAYA3 uses transport corrected multi-group diffusion approximation with interface discontinuity factors of GET or Black Box Homogenization type. The COBAYA3 pin-by-pin results in 2, 4 and 8 energy groups are close to the reference solutions when using side-dependent interface discontinuity factors.
Resumo:
In this paper, we axiomatically introduce fuzzy multi-measures on bounded lattices. In particular, we make a distinction between four different types of fuzzy set multi-measures on a universe X, considering both the usual or inverse real number ordering of this lattice and increasing or decreasing monotonicity with respect to the number of arguments. We provide results from which we can derive families of measures that hold for the applicable conditions in each case.
Resumo:
The Ising problem consists in finding the analytical solution of the partition function of a lattice once the interaction geometry among its elements is specified. No general analytical solution is available for this problem, except for the one-dimensional case. Using site-specific thermodynamics, it is shown that the partition function for ligand binding to a two-dimensional lattice can be obtained from those of one-dimensional lattices with known solution. The complexity of the lattice is reduced recursively by application of a contact transformation that involves a relatively small number of steps. The transformation implemented in a computer code solves the partition function of the lattice by operating on the connectivity matrix of the graph associated with it. This provides a powerful new approach to the Ising problem, and enables a systematic analysis of two-dimensional lattices that model many biologically relevant phenomena. Application of this approach to finite two-dimensional lattices with positive cooperativity indicates that the binding capacity per site diverges as Na (N = number of sites in the lattice) and experiences a phase-transition-like discontinuity in the thermodynamic limit N → ∞. The zeroes of the partition function tend to distribute on a slightly distorted unit circle in complex plane and approach the positive real axis already for a 5×5 square lattice. When the lattice has negative cooperativity, its properties mimic those of a system composed of two classes of independent sites with the apparent population of low-affinity binding sites increasing with the size of the lattice, thereby accounting for a phenomenon encountered in many ligand-receptor interactions.
Resumo:
To demonstrate that crystallographic methods can be applied to index and interpret diffraction patterns from well-ordered quasicrystals that display non-crystallographic 5-fold symmetry, we have characterized the properties of a series of periodic two-dimensional lattices built from pentagons, called Fibonacci pentilings, which resemble aperiodic Penrose tilings. The computed diffraction patterns from periodic pentilings with moderate size unit cells show decagonal symmetry and are virtually indistinguishable from that of the infinite aperiodic pentiling. We identify the vertices and centers of the pentagons forming the pentiling with the positions of transition metal atoms projected on the plane perpendicular to the decagonal axis of quasicrystals whose structure is related to crystalline η phase alloys. The characteristic length scale of the pentiling lattices, evident from the Patterson (autocorrelation) function, is ∼τ2 times the pentagon edge length, where τ is the golden ratio. Within this distance there are a finite number of local atomic motifs whose structure can be crystallographically refined against the experimentally measured diffraction data.
Resumo:
We consider exciton optical absorption in quasiperiodic lattices, focusing our attention on the Fibonacci case as a typical example. The absorption spectrum is evaluated by solving numerically the equation of motion of the Frenkel-exciton problem on the lattice, in which on-site energies take on two values according to the Fibonacci sequence. We find that the quasiperiodic order causes the occurrence of well-defined characteristic features in the absorption spectra. We also develop an analytical method that relates satellite lines with the Fourier pattern of the lattice. Our predictions can be used to determine experimentally the long-range quasiperiodic order from optical measurements.
Resumo:
We rigorously analyze the propagation of localized surface waves that takes place at the boundary between a semi-infinite layered metal-dielectric (MD) nanostructure cut normally to the layers and a isotropic medium. It is demonstrated that Dyakonov-like surface waves (also coined dyakonons) with hybrid polarization may propagate in a wide angular range. As a consequence, dyakonon-based wave-packets (DWPs) may feature sub-wavelength beamwidths. Due to the hyperbolic-dispersion regime in plasmonic crystals, supported DWPs are still in the canalization regime. The apparent quadratic beam spreading, however, is driven by dissipation effects in metal.
Resumo:
Mode of access: Internet.
Resumo:
Vita.
Resumo:
"CU-2-62-NSF G19022-M."
Resumo:
We summarize recent theoretical results for the signatures of strongly correlated ultra-cold fermions in optical lattices. In particular, we focus on collective mode calculations, where a sharp decrease in collective mode frequency is predicted at the onset of the Mott metal-insulator transition; and correlation functions at finite temperature, where we employ a new exact technique that applies the stochastic gauge technique with a Gaussian operator basis.
Resumo:
Good quality concept lattice drawings are required to effectively communicate logical structure in Formal Concept Analysis. Data analysis frameworks such as the Toscana System use manually arranged concept lattices to avoid the problem of automatically producing high quality lattices. This limits Toscana systems to a finite number of concept lattices that have been prepared a priori. To extend the use of formal concept analysis, automated techniques are required that can produce high quality concept lattice drawings on demand. This paper proposes and evaluates an adaption of layer diagrams to improve automated lattice drawing. © Springer-Verlag Berlin Heidelberg 2006.