898 resultados para LARGE SYSTEMS
Resumo:
This thesis introduces and develops a novel real-time predictive maintenance system to estimate the machine system parameters using the motion current signature. Recently, motion current signature analysis has been addressed as an alternative to the use of sensors for monitoring internal faults of a motor. A maintenance system based upon the analysis of motion current signature avoids the need for the implementation and maintenance of expensive motion sensing technology. By developing nonlinear dynamical analysis for motion current signature, the research described in this thesis implements a novel real-time predictive maintenance system for current and future manufacturing machine systems. A crucial concept underpinning this project is that the motion current signature contains information relating to the machine system parameters and that this information can be extracted using nonlinear mapping techniques, such as neural networks. Towards this end, a proof of concept procedure is performed, which substantiates this concept. A simulation model, TuneLearn, is developed to simulate the large amount of training data required by the neural network approach. Statistical validation and verification of the model is performed to ascertain confidence in the simulated motion current signature. Validation experiment concludes that, although, the simulation model generates a good macro-dynamical mapping of the motion current signature, it fails to accurately map the micro-dynamical structure due to the lack of knowledge regarding performance of higher order and nonlinear factors, such as backlash and compliance. Failure of the simulation model to determine the micro-dynamical structure suggests the presence of nonlinearity in the motion current signature. This motivated us to perform surrogate data testing for nonlinearity in the motion current signature. Results confirm the presence of nonlinearity in the motion current signature, thereby, motivating the use of nonlinear techniques for further analysis. Outcomes of the experiment show that nonlinear noise reduction combined with the linear reverse algorithm offers precise machine system parameter estimation using the motion current signature for the implementation of the real-time predictive maintenance system. Finally, a linear reverse algorithm, BJEST, is developed and applied to the motion current signature to estimate the machine system parameters.
Resumo:
This exploratory study is concerned with the integrated appraisal of multi-storey dwelling blocks which incorporate large concrete panel systems (LPS). The first step was to look at U.K. multi-storey dwelling stock in general, and under the management of Birmingham City Council in particular. The information has been taken from the databases of three departments in the City of Birmingham, and rearranged in a new database using a suite of PC software called `PROXIMA' for clarity and analysis. One hundred of their stock were built large concrete panel system. Thirteen LPS blocks were chosen for the purpose of this study as case-studies depending mainly on the height and age factors of the block. A new integrated appraisal technique has been created for the LPS dwelling blocks, which takes into account the most physical and social factors affecting the condition and acceptability of these blocks. This appraisal technique is built up in a hierarchical form moving from the general approach to particular elements (a tree model). It comprises two main approaches; physical and social. In the physical approach, the building is viewed as a series of manageable elements and sub-elements to cover every single physical or environmental factor of the block, in which the condition of the block is analysed. A quality score system has been developed which depends mainly on the qualitative and quantitative conditions of each category in the appraisal tree model, and leads to physical ranking order of the study blocks. In the social appraisal approach, the residents' satisfaction and attitude toward their multi-storey dwelling block was analysed in relation to: a. biographical and housing related characteristics; and b. social, physical and environmental factors associated with this sort of dwelling, block and estate in general.The random sample consisted of 268 residents living in the 13 case study blocks. Data collected was analysed using frequency counts, percentages, means, standard deviations, Kendall's tue, r-correlation coefficients, t-test, analysis of variance (ANOVA) and multiple regression analysis. The analysis showed a marginally positive satisfaction and attitude towards living in the block. The five most significant factors associated with the residents' satisfaction and attitude in descending order were: the estate, in general; the service categories in the block, including heating system and lift services; vandalism; the neighbours; and the security system of the block. An important attribute of this method, is that it is relatively inexpensive to implement, especially when compared to alternatives adopted by some local authorities and the BRE. It is designed to save time, money and effort, to aid decision making, and to provide ranked priority to the multi-storey dwelling stock, in addition to many other advantages. A series of solution options to the problems of the block was sought for selection and testing before implementation. The traditional solutions have usually resulted in either demolition or costly physical maintenance and social improvement of the blocks. However, a new solution has now emerged, which is particularly suited to structurally sound units. The solution of `re-cycling' might incorporate the reuse of an entire block or part of it, by removing panels, slabs and so forth from the upper floors in order to reconstruct them as low-rise accommodations.
Resumo:
The simulation of a power system such as the More Electric Aircraft is a complex problem. There are conflicting requirements of the simulation, for example in order to reduce simulation run-times, power ratings that need to be established over long periods of the flight can be calculated using a fairly coarse model, whereas power quality is established over relatively short periods with a detailed model. An important issue is to establish the requirements of the simulation work at an early stage. This paper describes the modelling and simulation strategy adopted for the UK TIMES project, which is looking into the optimisation of the More Electric Aircraft from a system level. Essentially four main requirements of the simulation work have been identified, resulting in four different types of simulation. Each of the simulations is described along with preliminary models and results.
Resumo:
It is consider the new global models for society of neuronet type. The hierarchical structure of society and mentality of individual are considered. The way for incorporating in model anticipatory (prognostic) ability of individual is considered. Some implementations of approach for real task and further research problems are described. Multivaluedness of models and solutions is discussed. Sensory-motor systems analogy also is discussed. New problems for theory and applications of neural networks are described.
Resumo:
This chapter discusses network protection of high-voltage direct current (HVDC) transmission systems for large-scale offshore wind farms where the HVDC system utilizes voltage-source converters. The multi-terminal HVDC network topology and protection allocation and configuration are discussed with DC circuit breaker and protection relay configurations studied for different fault conditions. A detailed protection scheme is designed with a solution that does not require relay communication. Advanced understanding of protection system design and operation is necessary for reliable and safe operation of the meshed HVDC system under fault conditions. Meshed-HVDC systems are important as they will be used to interconnect large-scale offshore wind generation projects. Offshore wind generation is growing rapidly and offers a means of securing energy supply and addressing emissions targets whilst minimising community impacts. There are ambitious plans concerning such projects in Europe and in the Asia-Pacific region which will all require a reliable yet economic system to generate, collect, and transmit electrical power from renewable resources. Collective offshore wind farms are efficient and have potential as a significant low-carbon energy source. However, this requires a reliable collection and transmission system. Offshore wind power generation is a relatively new area and lacks systematic analysis of faults and associated operational experience to enhance further development. Appropriate fault protection schemes are required and this chapter highlights the process of developing and assessing such schemes. The chapter illustrates the basic meshed topology, identifies the need for distance evaluation, and appropriate cable models, then details the design and operation of the protection scheme with simulation results used to illustrate operation. © Springer Science+Business Media Singapore 2014.
Resumo:
Advances in the area of industrial metrology have generated new technologies that are capable of measuring components with complex geometry and large dimensions. However, no standard or best-practice guides are available for the majority of such systems. Therefore, these new systems require appropriate testing and verification in order for the users to understand their full potential prior to their deployment in a real manufacturing environment. This is a crucial stage, especially when more than one system can be used for a specific measurement task. In this paper, two relatively new large-volume measurement systems, the mobile spatial co-ordinate measuring system (MScMS) and the indoor global positioning system (iGPS), are reviewed. These two systems utilize different technologies: the MScMS is based on ultrasound and radiofrequency signal transmission and the iGPS uses laser technology. Both systems have components with small dimensions that are distributed around the measuring area to form a network of sensors allowing rapid dimensional measurements to be performed in relation to large-size objects, with typical dimensions of several decametres. The portability, reconfigurability, and ease of installation make these systems attractive for many industries that manufacture large-scale products. In this paper, the major technical aspects of the two systems are briefly described and compared. Initial results of the tests performed to establish the repeatability and reproducibility of these systems are also presented. © IMechE 2009.
Resumo:
Society depends on complex IT systems created by integrating and orchestrating independently managed systems. The incredible increase in scale and complexity in them over the past decade means new software-engineering techniques are needed to help us cope with their inherent complexity. The key characteristic of these systems is that they are assembled from other systems that are independently controlled and managed. While there is increasing awareness in the software engineering community of related issues, the most relevant background work comes from systems engineering. The interacting algos that led to the Flash Crash represent an example of a coalition of systems, serving the purposes of their owners and cooperating only because they have to. The owners of the individual systems were competing finance companies that were often mutually hostile. Each system jealously guarded its own information and could change without consulting any other system.
Resumo:
This paper determines the capability of two photogrammetric systems in terms of their measurement uncertainty in an industrial context. The first system – V-STARS inca3 from Geodetic Systems Inc. – is a commercially available measurement solution. The second system comprises an off-the-shelf Nikon D700 digital camera fitted with a 28 mm Nikkor lens and the research-based Vision Measurement Software (VMS). The uncertainty estimate of these two systems is determined with reference to a calibrated constellation of points determined by a Leica AT401 laser tracker. The calibrated points have an average associated standard uncertainty of 12·4 μm, spanning a maximum distance of approximately 14·5 m. Subsequently, the two systems’ uncertainty was determined. V-STARS inca3 had an estimated standard uncertainty of 43·1 μm, thus outperforming its manufacturer's specification; the D700/VMS combination achieved a standard uncertainty of 187 μm.
Resumo:
Recreational fisheries in North America are valued between $47.3 billion and $56.8 billion. Fisheries managers must make strategic decisions based on sound science and knowledge of population ecology, to effectively conserve populations. Competitive fishing, in the form of tournaments, has become an important part of recreational fisheries, and is common on large waterbodies including the Great Lakes. Black Bass, Micropterus spp., are top predators and among the most sought after species in competitive catch-and-release tournaments. This study investigated catch-and-release tournaments as an assessment tool through mark-recapture for Largemouth Bass (>305mm) populations in the Tri Lakes, and Bay of Quinte, part of the eastern basin of Lake Ontario. The population in the Tri Lakes (1999-2002) was estimated to be stable between 21,928-29,780, and the population in the Bay of Quinte (2012-2015) was estimated to be between 31,825-54,029 fish. Survival in the Tri Lakes varied throughout the study period, from 31%-54%; while survival in the Bay of Quinte remained stable at 63%. Differences in survival may be due to differences in fishing pressure, as 34-46% of the Largemouth Bass population on the Tri Lakes is harvested annually and only 19% of catch was attributed to tournament angling. Many biological issues still surround catch-and-release tournaments, particularly concerning displacement from initial capture sites. In the past, the majority of studies have focused on small inland lakes and coastal areas, displacing bass relatively short distances. My study displaced Largemouth and Smallmouth Bass up to 100km, and found very low rates of return; only 1 of 18 Largemouth Bass returned 15 km and 1 of 18 Smallmouth Bass returned 135 km. Both species remained near the release sites for an average of approximately 2 weeks prior to dispersing. Tournament organizers should consider the use of satellite release locations to facilitate dispersal and prevent stockpiling at the release site. Catch-and-release tournaments proved to be a valuable tool in assessing population variables and the effects of long distance displacement through the use of mark recapture and acoustic telemetry on large lake systems.
Resumo:
The European Union continues to exert a large influence on the direction of member states energy policy. The 2020 targets for renewable energy integration have had significant impact on the operation of current power systems, forcing a rapid change from fossil fuel dominated systems to those with high levels of renewable power. Additionally, the overarching aim of an internal energy market throughout Europe has and will continue to place importance on multi-jurisdictional co-operation regarding energy supply. Combining these renewable energy and multi-jurisdictional supply goals results in a complicated multi-vector energy system, where the understanding of interactions between fossil fuels, renewable energy, interconnection and economic power system operation is increasingly important. This paper provides a novel and systematic methodology to fully understand the changing dynamics of interconnected energy systems from a gas and power perspective. A fully realistic unit commitment and economic dispatch model of the 2030 power systems in Great Britain and Ireland, combined with a representative gas transmission energy flow model is developed. The importance of multi-jurisdictional integrated energy system operation in one of the most strategically important renewable energy regions is demonstrated.
Resumo:
Large-scale multiple-input multiple-output (MIMO) communication systems can bring substantial improvement in spectral efficiency and/or energy efficiency, due to the excessive degrees-of-freedom and huge array gain. However, large-scale MIMO is expected to deploy lower-cost radio frequency (RF) components, which are particularly prone to hardware impairments. Unfortunately, compensation schemes are not able to remove the impact of hardware impairments completely, such that a certain amount of residual impairments always exists. In this paper, we investigate the impact of residual transmit RF impairments (RTRI) on the spectral and energy efficiency of training-based point-to-point large-scale MIMO systems, and seek to determine the optimal training length and number of antennas which maximize the energy efficiency. We derive deterministic equivalents of the signal-to-noise-and-interference ratio (SINR) with zero-forcing (ZF) receivers, as well as the corresponding spectral and energy efficiency, which are shown to be accurate even for small number of antennas. Through an iterative sequential optimization, we find that the optimal training length of systems with RTRI can be smaller compared to ideal hardware systems in the moderate SNR regime, while larger in the high SNR regime. Moreover, it is observed that RTRI can significantly decrease the optimal number of transmit and receive antennas.
Resumo:
Otto-von-Guericke-Universität Magdeburg, Fakultät für Mathematik, Dissertation, 2016