790 resultados para Lésions ischémie-reperfusion
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The relationship between coronary sinus blood oxygen tension (CSPO 2) and myocardial oxygen tension (MPO 2) variations during cardiac ischemia and reperfusion was studied in anesthetized open-chest dogs. Oxygen tension was measured by a polarographic method. Ischemia resulted in a slightly decreased CSPO 2 and a more pronounced reduction of MPO 2. After reperfusion the CSPO 2 rose rapidly and transiently before it returned gradually to the control level. By contrast, during the recovery period, the MPO 2 increased slowly, with recovery occurring long after the peak of CSPO 2. These data suggest that during the reperfusion phase, the CSPO 2 variation is probably due to opening of the myocardial arteriovenous shunts instead of an increase of flow through the myocardial capillary bed.
Resumo:
Background: Splanchnic artery occlusion shock is caused by increased capillary permeability and cellular injury precipitated by oxygen derived free radicals following ischemia and reperfusion of splanchnic organs. The purpose of this study was to assess the role of several well-known oxygen- derived free radical scavengers in ameliorating or preventing this syndrome. Study design: Anesthetized rats were subjected to periods of occlusion of the visceral arteries and reperfusion. Tocopherol, taurine, selenium or a 'cocktail' of these three agents was injected subcutaneously for 4 consecutive days prior to operation. Mean arterial blood pressure was measured throughout the experimental period. Fluorometry and technetium-99m pyrophosphate counting of the visceral organs were performed as well as a histologic grading system for intestinal viability. Results: Final mean arterial blood pressure associated with the 'cocktail' and selenium groups was 79.1 ± 27.4 mmHg and 83.6 ± 17.8 mmHg, respectively. These values were significantly higher than the control group, 40.8 ± 11.4 mmHg (P < 0.05). Similar patterns of the benefit of selenium in contrast with the other groups were obtained with fluorescein perfusion, radioisotopic activity and histologic analysis. Conclusion: Pretreatment with selenium of splanchnic ischemia and reperfusion in the rat improves mean arterial blood pressure and microcirculatory visceral perfusion. Further analysis of the precise protective mechanism of selenium for reperfusion injury will enable visceral organs to withstand the consequences of increased capillary leakage and oxidant injury.
Resumo:
During ischemia, the cell structures are progressively damaged, but restoration of the blood flow, paradoxically, intensifies the lesions caused by the ischemia. The mechanisms of ischemia injury and reperfusion (I/R) have not been completely defined and many studies have been realized in an attempt to find an ideal therapy for mesenteric I/R. The occlusion and reperfusion of the splanchnic arteries provokes local and systemic alterations principally derived from the release of cytotoxic substances and the interaction between neutrophils and endothelial cells. Substances involved in the process are discussed in the present review, like oxygen-derived free radicals, nitric oxide, transcription factors, complement system, serotonin and pancreatic proteases. The mechanisms of apoptosis, alterations in other organs, therapeutic and evaluation methods are also discussed.
Resumo:
The aim of this work was to evaluate the effect of physical preconditioning in the responsiveness of rat pulmonary rings submitted to lung ischemia/reperfusion (IR). Wistar rats were divided into three groups: Sedentary sham-operated (SD/SHAM); sedentary submitted to ischemia/reperfusion (SD/IR) and trained submitted to ischemia/reperfusion (TR/IR) animals. Exercise training consisted in sessions of 60 min/day running sessions, 5 days/week for 8 weeks. Left pulmonary IR was performed by occluding for 90 min and reperfusing for 120 min. After that, pulmonary arteries were isolated and concentration-response curves to acetylcholine (ACh), histamine (HIST), sodium nitroprusside (SNP), phenylephrine and U46619 were obtained. Neither potency (- log EC50) nor maximal responses (Emax) were modified for ACh and HIST in all groups. On the other hand, the potency for SNP was significantly increased in TR/IR group (8.23 ± 0.06) compared to SD/IR group (7.85 ± 0.04). Contractile responses mediated by a-adrenergic receptor were markedly decreased in IR groups (SD/IR: 6.75 ± 0.06 and TR/IR: 6.62 ± 0.04) compared to SD/SHAM (7.33 ± 0.05). No changes were seen for the U46619 in all groups. In conclusion, the present study shows that exercise training has no protective actions in the local blood vessel where the IR process takes place. © 2006 Elsevier Inc. All rights reserved.
Resumo:
Aim. Occlusion and reperfusion of splanchnic arteries cause local and systemic changes due to the release of cytotoxic substances and the interaction between neutrophils and endothelial cells. This study evaluated the role of pentoxifylline (PTX) and n-acetylcysteine (NAC) in the reduction of ischemia, reperfusion shock and associated intestinal injury. Methods. Sixty rats were divided into 6 groups of 10 animals. Rats in three groups underwent mesenteric ischemia for 30 minutes followed by 120 minutes of reperfusion, and were treated with saline (SAL-5 mL/kg/ h), pentoxifylline (PTX-50 mg/kg) or n-acetylcysteine (NAC-430 mg/kg/h). The other 3 groups underwent sham ischemia and reperfusion (I/R) and received the same treatments. Hemodynamic, biochemical and histological parameters were evaluated. Results. No significant hemodynamic or intestinal histological changes were seen in any sham group. No histological changes were found in the lung or liver of animals in the different groups. There was a progressive decrease in mean arterial blood pressure, from mean of 111.53 mmHg (30 minutes of ischemia) to 44.30±19.91 mmHg in SAL-I/R. 34.52±17.22 mmHg in PTX-I/R and 33.81±8.39 mmHg in NAC-I/R (P<0.05). In all I/R groups, there was a progressive decrease in: aortic blood flow, from median baseline of 19.00 mL/min to 2.50±5.25 mL/min in SAL-I/ R; 2.95±6.40 mL/min in PTX-I/R and 3.35±3.40 mL/min in NAC-I/R (P<0.05); in the heart rate, from mean baseline of 311.74 bpm to 233.33±83.88 bpm in SAL-I/R, 243.20±73.25 bpm in PTX-I/R and 244.92±76.05 bpm in NAC-I/R (P<0.05); and esophageal temperature, from mean baseline of 33.68°C to 30.53±2.05°C in SAL-I/R, 30.69±2.21°C in PTX-I/R and 31.43±1.03°C in NAC-I/R (P<0.05). In the other hand, there was an attenuation of mucosal damage in the small intestine of the animals receiving PTX, and only in the ileum of the animals receiving NAC. No changes were found in ileum or plasma malondialdehyde levels in any group. Conclusion. PTX was more efficient in reducing histological lesions than NAC, but neither treatment prevented hemodynamic changes during splanchnic organs I/R.
Resumo:
Background: Intestinal ischemia/reperfusion (IR) injury is a serious and triggering event in the development of remote organ dysfunction, from which the lung is the main target. This condition is characterized by intense neutrophil recruitment, increased microvascular permeability. Intestinal IR is also responsible for induction of adult respiratory distress syndrome, the most serious and life-threatening form of acute lung injury. The purpose of this study was to investigate the effect of annexin-A1 protein as an endogenous regulator of the organ remote injury induced by intestinal ischemia/reperfusion. Male C57bl/6 mice were subjected to intestinal ischemia, induced by 45 min occlusion of the superior mesenteric artery, followed by reperfusion. Results: The intestinal ischemia/reperfusion evoked a high intensity lung inflammation as indicated by the number of neutrophils as compared to control group. Treatment with annexin-A1 peptidomimetic Ac2-26, reduced the number of neutrophils in the lung tissue and increased its number in the blood vessels, which suggests a regulatory effect of the peptide Ac2-26 in the neutrophil migration. Moreover, the peptide Ac2-26 treatment was associated with higher levels of plasma IL-10. Conclusion: Our data suggest that the annexin-A1 peptidomimetic Ac2-26 treatment has a regulatory and protective effect in the intestinal ischemia/reperfusion by attenuation of the leukocyte migration to the lung and induction of the anti-inflammatory cytokine IL-10 release into the plasma. The anti-inflammatory action of annexin-A1 and its peptidomimetic described here may serve as a basis for future therapeutic approach in mitigating inflammatory processes due to intestinal ischemia/reperfusion. © 2013 Guido et al.; licensee BioMed Central Ltd.
Resumo:
OBJETIVO: Avaliar em um modelo experimental de isquemia-reperfusão hepática os efeitos da injeção intraluminal de glutamina na capacidade anti-oxidante total em equivalência ao trolox (TEAC) do plasma, verificando a aplicabilidade de modificações ao método original de dosagem. MÉTODOS: Trinta ratos Wistar foram submetidos a laparotomia e confecção de uma alça fechada de 20 cm de comprimento envolvendo o intestinal delgado distal seguido do clampeamento do hilo hepático por 30 minutos e reperfusão por 5 minutos. Na alça fechada foi injetada glutamina (grupo glutamina; n=10) ou água destilada (grupo controle; n=10). Em dez animais (grupo sham) não foi realizado clampeamento hilar. Coletou-se sangue para dosagem da capacidade antioxidante total em equivalência ao trolox em condições modificadas de temperatura, proporções relativas dos reagentes e tempo de leitura sob espectrofotometria. RESULTADOS: A capacidade antioxidante total foi significantemente maior (p<0.05) no grupo glutamina que no grupo controle (1,60[1,55-1,77] vs 1,44[1,27-1,53]) e grupo sham (1,60[1,55-1,77] vs 1,48[1,45-1,59]). Não houve diferenças estatísticas entre o grupo controle e o grupo sham. CONCLUSÃO: A glutamina melhorou a capacidade anti-oxidante total plasmática. O método de dosagem refletiu consistentemente alterações na defesa anti-oxidante nesse modelo experimental.
Resumo:
Background. Melatonin is a free radical scavenger with important actions in the study of renal ischemia and reperfusion (I/R). This study evaluated possible renal protection of high doses of melatonin in an experimental model of I/R in which rats were submitted to acute hyperglycemia under anesthesia with isoflurane.Method. Forty-four male Wistar rats, weighing more than 300 g, were randomly divided into 5 groups: G1, sham (n = 10); G2, melatonin (n = 10; 50 mg.kg(-1)); G3, hyperglycemia (n = 9; glucose 2.5 g.kg(-1)); G4, hyperglycemia/melatonin (n = 10; 2.5 g.kg(-1) glucose + melatonin 50 mg.kg(-1)); and G5, I/R (n = 5). In all groups, anesthesia was induced with 4% isoflurane and maintained with 1.5% to 2.0% isoflurane. Intraperitoneal injection of melatonin (G1, G4), glucose (G3, G4), or saline (G1, G5) was performed 40 minutes before left renal ischemia. Serum plasma values for creatinine and glucose were determined at baseline (M1), immediately following reperfusion (M2), and 24 hours after completion of the experiment (M3). Histological analysis was performed to evaluate tubular necrosis (0-5).Results. Serum glucose was higher at M2 in the groups supplemented with glucose, hyperglycemia (356.00 +/- 107.83), and hyperglycemia/melatonin (445.3 +/- 148.32). Creatinine values were higher at T3 (P = .0001) for I/R (3.6 +/- 0.37), hyperglycemia/melatonin (3.9 +/- 0.46), and hyperglycemia (3.71 +/- 0.69) and lower in the sham (0.79 +/- 0.16) and melatonin (2.01 +/- 1.01) groups, P < .05. Histology showed no necrosis injury in the G1, lesion grade 2 in the G2, and severe acute tubular necrosis in the G3: (grade 4), G4: (grade 5) and G5: (grade 4) groups (P < .0001).Discussion. Melatonin protected the kidneys submitted to I/R in rats without hyperglycemia; however, this did not occur when the I/R lesion was associated with hyperglycemia.Conclusions. Due to its antioxidant and antiapoptotic action, melatonin was able to mitigate, but not prevent acute tubular necrosis in rats with hyperglycemia under anesthesia by isoflurane.
Resumo:
Background: The high prevalence of dysphagia after stroke leads to increased mortality, and cerebral reperfusion therapy has been effective in reducing neurologic deficits. The aim of this study was to investigate the severity and evolution of dysphagia and the occurrence of pneumonia in patients submitted to cerebral reperfusion therapy. Methods: Seventy ischemic stroke patients were evaluated. Of these, 35 patients (group 1) were submitted to cerebral reperfusion therapy and 35 (group 2) did not receive thrombolytic treatment. The following were evaluated: severity of dysphagia by means of videofluoroscopy, evolution of oral intake rate by means of the Functional Oral Intake Scale, and the occurrence of pneumonia by international protocol. The relation between the severity of dysphagia and the occurrence of pneumonia with the treatment was evaluated through the chi-square test; the daily oral intake rate and its relation to the treatment were assessed by the Mann-Whitney test and considered significant if P is less than .05. Results: The moderate and severe degrees of dysphagia were more frequent (P = .013) among the patients who were not submitted to cerebral reperfusion therapy. The daily oral intake evolved independently of the treatment type, without statistical significance when compared between the groups, whereas pneumonia occurred more frequently in group 2 (28%) in relation to group 1 (11%) and was associated with the worst degrees of dysphagia (P = .045). Conclusions: We can conclude that there is improvement in the oral intake rate in both groups, with lower severity of dysphagia and occurrence of pneumonia in ischemic stroke patients submitted to cerebral reperfusion therapy. (C) 2014 by National Stroke Association
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
To evaluate the effect of parecoxib (an NSAID) on renal function by measuring plasma NGAL (serum neutrophil gelatinase-associated lipocalin) levels in an induced-ischemia rat model. METHODS: Forty male Wistar rats were randomly assigned to one of four groups: Ischemia (I), Ischemia/parecoxib (IP), No-ischemia (NI), and No-ischemia/parecoxib (NIP). Body weight, mean arterial pressure, heart rate, body temperature, NGAL levels, and renal histology were compared across groups. RESULTS: The Ischemia (I) group, which did not receive parecoxib, showed the highest NGAL levels (p=0.001), while the IP group, which received the medication, had NGAL levels similar to those of the non-ischemic (NI and NIP) groups. CONCLUSION: Parecoxib resulted in renal protection in this experimental model.
Resumo:
Background: Ischemic acute kidney injury is a common occurrence in the perioperative period and in critical patients admitted to intensive care units. The reestablishment of blood supply may worsen injury through the ischemia-reperfusion (I/R) mechanism. We investigated the effect of dexmedetomidine on the kidneys of rats subjected to an experimental I/R model. Methods: 34 rats anesthetized with isoflurane was undergone right nephrectomy and randomly assigned to four groups: Control C (saline solution); Dexmedetomidine D (dexmedetomidine); Sham S (saline solution); Sham with Dexmedetomidine SD (dexmedetomidine). The serum levels of neutrophil gelatinase-associated lipocalin (NGAL) were measured at time-points T1 (following stabilization), T2 (ischemia), T3 (reperfusion), T4 (12 h after of I/R). The kidneys were subjected to histological examination. Results: The NGAL levels were significantly higher at T4 compared with T1. Upon histological examination, the left kidneys in groups C and D exhibited a similar extent of cell injury. Conclusion: The levels of NGAL did not indicate either protection against or worsening of kidney injury. Histological examination for acute tubular necrosis showed that dexmedetomidine did not protect the kidneys from I/R.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)