792 resultados para Knowledge-based industry
Resumo:
The confluence of three-dimensional (3D) virtual worlds with social networks imposes on software agents, in addition to conversational functions, the same behaviours as those common to human-driven avatars. In this paper, we explore the possibilities of the use of metabots (metaverse robots) with motion capabilities in complex virtual 3D worlds and we put forward a learning model based on the techniques used in evolutionary computation for optimizing the fuzzy controllers which will subsequently be used by metabots for moving around a virtual environment.
Resumo:
In this article we describe a method for automatically generating text summaries of data corresponding to traces of spatial movement in geographical areas. The method can help humans to understand large data streams, such as the amounts of GPS data recorded by a variety of sensors in mobile phones, cars, etc. We describe the knowledge representations we designed for our method and the main components of our method for generating the summaries: a discourse planner, an abstraction module and a text generator. We also present evaluation results that show the ability of our method to generate certain types of geospatial and temporal descriptions.
Resumo:
In computer science, different types of reusable components for building software applications were proposed as a direct consequence of the emergence of new software programming paradigms. The success of these components for building applications depends on factors such as the flexibility in their combination or the facility for their selection in centralised or distributed environments such as internet. In this article, we propose a general type of reusable component, called primitive of representation, inspired by a knowledge-based approach that can promote reusability. The proposal can be understood as a generalisation of existing partial solutions that is applicable to both software and knowledge engineering for the development of hybrid applications that integrate conventional and knowledge based techniques. The article presents the structure and use of the component and describes our recent experience in the development of real-world applications based on this approach.
Resumo:
In this paper, the fusion of probabilistic knowledge-based classification rules and learning automata theory is proposed and as a result we present a set of probabilistic classification rules with self-learning capability. The probabilities of the classification rules change dynamically guided by a supervised reinforcement process aimed at obtaining an optimum classification accuracy. This novel classifier is applied to the automatic recognition of digital images corresponding to visual landmarks for the autonomous navigation of an unmanned aerial vehicle (UAV) developed by the authors. The classification accuracy of the proposed classifier and its comparison with well-established pattern recognition methods is finally reported.
Resumo:
Information and Communication Technologies can support Active Aging strategies in a scenario like the Smart Home. This paper details a person centered distributed framework, called TALISMAN+, whose aim is to promote personal autonomy by taking advantage of knowledge based technologies, sensors networks, mobile devices and internet. The proposed solution can support an elderly person to keep living alone at his house without being obliged to move to a residential center. The framework is composed by five subsystems: a reasoning module that is able to take local decisions at home in order to support active aging, a biomedical variables telemonitorisation platform running on a mobile device, a hybrid reasoning middleware aimed to assess cardiovascular risk in a remote way, a private vision based sensor subsystem, and a secure telematics solution that guarantees confidentiality for personal information. TALISMAN+ framework deployment is being evaluated at a real environment like the Accessible Digital Home.
Resumo:
After being designed, a product has to be manufactured, which means converting concepts and information into a real, physical object. This requires a big amount of resources and a careful planning. The product manufacturing must be designed too, and that is called Industrialization Design. An accepted methodology for this activity is starting defining simple structures and then progressively increasing the detail degree of the manufacturing solution. The impact of decisions taken at first stages of Industrialization Design is remarkable, and software tools to assist designers are required. In this paper a Knowledge Based Application prototype for the Industrialization Design is presented. The application is implemented within the environment CATIA V5/DELMIA. A case study with a simple Product from aerospace sector illustrates the prototype development.
Resumo:
Effective automatic summarization usually requires simulating human reasoning such as abstraction or relevance reasoning. In this paper we describe a solution for this type of reasoning in the particular case of surveillance of the behavior of a dynamic system using sensor data. The paper first presents the approach describing the required type of knowledge with a possible representation. This includes knowledge about the system structure, behavior, interpretation and saliency. Then, the paper shows the inference algorithm to produce a summarization tree based on the exploitation of the physical characteristics of the system. The paper illustrates how the method is used in the context of automatic generation of summaries of behavior in an application for basin surveillance in the presence of river floods.
Resumo:
This paper describes a general approach for real time traffic management support using knowledge based models. Recognizing that human intervention is usually required to apply the current automatic traffic control systems, it is argued that there is a need for an additional intelligent layer to help operators to understand traffic problems and to make the best choice of strategic control actions that modify the assumption framework of the existing systems.
Resumo:
We present a theoretical framework and a case study for reusing the same conceptual and computational methodology for both temporal abstraction and linear (unidimensional) space abstraction, in a domain (evaluation of traffic-control actions) significantly different from the one (clinical medicine) in which the method was originally used. The method, known as knowledge-based temporal abstraction, abstracts high-level concepts and patterns from time-stamped raw data using a formal theory of domain-specific temporal-abstraction knowledge. We applied this method, originally used to interpret time-oriented clinical data, to the domain of traffic control, in which the monitoring task requires linear pattern matching along both space and time. First, we reused the method for creation of unidimensional spatial abstractions over highways, given sensor measurements along each highway measured at the same time point. Second, we reused the method to create temporal abstractions of the traffic behavior, for the same space segments, but during consecutive time points. We defined the corresponding temporal-abstraction and spatial-abstraction domain-specific knowledge. Our results suggest that (1) the knowledge-based temporal-abstraction method is reusable over time and unidimensional space as well as over significantly different domains; (2) the method can be generalized into a knowledge-based linear-abstraction method, which solves tasks requiring abstraction of data along any linear distance measure; and (3) a spatiotemporal-abstraction method can be assembled from two copies of the generalized method and a spatial-decomposition mechanism, and is applicable to tasks requiring abstraction of time-oriented data into meaningful spatiotemporal patterns over a linear, decomposable space, such as traffic over a set of highways.
Resumo:
After being designed, a product has to be manufactured, which means converting concepts and information into a real, physical object. This requires a big amount of resources and a careful planning. The product manufacturing must be designed too, and that is called Industrialization Design. An accepted methodology for this activity is starting defining simple structures and then progressively increasing the detail degree of the manufacturing solution. The impact of decisions taken at first stages of Industrialization Design is remarkable, and software tools to assist designers are required. In this paper a Knowledge Based Application prototype for the Industrialization Design is presented. The application is implemented within the environment CATIA V5/DELMIA. A case study with a simple Product from aerospace sector illustrates the prototype development.
Resumo:
We introduce a method of functionally classifying genes by using gene expression data from DNA microarray hybridization experiments. The method is based on the theory of support vector machines (SVMs). SVMs are considered a supervised computer learning method because they exploit prior knowledge of gene function to identify unknown genes of similar function from expression data. SVMs avoid several problems associated with unsupervised clustering methods, such as hierarchical clustering and self-organizing maps. SVMs have many mathematical features that make them attractive for gene expression analysis, including their flexibility in choosing a similarity function, sparseness of solution when dealing with large data sets, the ability to handle large feature spaces, and the ability to identify outliers. We test several SVMs that use different similarity metrics, as well as some other supervised learning methods, and find that the SVMs best identify sets of genes with a common function using expression data. Finally, we use SVMs to predict functional roles for uncharacterized yeast ORFs based on their expression data.
Resumo:
Knowledge has adopted a preferential role in the explanation of development while the evidence about the effect of natural resources in countries’ performance is more controversial in the economic literature. This paper tries to demonstrate that natural resources may positively affect growth in countries with a strong natural resources specialization pattern although the magnitude of these effects depend on the type of resources and on other aspects related to the production and innovation systems. The positive trajectory described by a set of national economies mainly specialized in natural resources and low-tech industries invites us to analyze what is the combination of factors that serves as engine for a sustainable development process. With panel data for the period 1996-2008 we estimate an applied growth model where both traditional factors and other more related to innovation and absorptive capabilities are taken into account. Our empirical findings show that according to the postulates of a knowledge-based approach, a framework that combines physical and intangible factors is more suitable for the definition of development strategies in those prosperous economies dominated by natural resources and connected activities, while the internationalization process of activities and technologies become also a very relevant aspect.
Resumo:
The extension to new languages is a well known bottleneck for rule-based systems. Considerable human effort, which typically consists in re-writing from scratch huge amounts of rules, is in fact required to transfer the knowledge available to the system from one language to a new one. Provided sufficient annotated data, machine learning algorithms allow to minimize the costs of such knowledge transfer but, up to date, proved to be ineffective for some specific tasks. Among these, the recognition and normalization of temporal expressions still remains out of their reach. Focusing on this task, and still adhering to the rule-based framework, this paper presents a bunch of experiments on the automatic porting to Italian of a system originally developed for Spanish. Different automatic rule translation strategies are evaluated and discussed, providing a comprehensive overview of the challenge.
Resumo:
The Answer Validation Exercise (AVE) is a pilot track within the Cross-Language Evaluation Forum (CLEF) 2006. The AVE competition provides an evaluation frame- work for answer validations in Question Answering (QA). In our participation in AVE, we propose a system that has been initially used for other task as Recognising Textual Entailment (RTE). The aim of our participation is to evaluate the improvement our system brings to QA. Moreover, due to the fact that these two task (AVE and RTE) have the same main idea, which is to find semantic implications between two fragments of text, our system has been able to be directly applied to the AVE competition. Our system is based on the representation of the texts by means of logic forms and the computation of semantic comparison between them. This comparison is carried out using two different approaches. The first one managed by a deeper study of the Word- Net relations, and the second uses the measure defined by Lin in order to compute the semantic similarity between the logic form predicates. Moreover, we have also designed a voting strategy between our system and the MLEnt system, also presented by the University of Alicante, with the aim of obtaining a joint execution of the two systems developed at the University of Alicante. Although the results obtained have not been very high, we consider that they are quite promising and this supports the fact that there is still a lot of work on researching in any kind of textual entailment.
Resumo:
Plane model extraction from three-dimensional point clouds is a necessary step in many different applications such as planar object reconstruction, indoor mapping and indoor localization. Different RANdom SAmple Consensus (RANSAC)-based methods have been proposed for this purpose in recent years. In this study, we propose a novel method-based on RANSAC called Multiplane Model Estimation, which can estimate multiple plane models simultaneously from a noisy point cloud using the knowledge extracted from a scene (or an object) in order to reconstruct it accurately. This method comprises two steps: first, it clusters the data into planar faces that preserve some constraints defined by knowledge related to the object (e.g., the angles between faces); and second, the models of the planes are estimated based on these data using a novel multi-constraint RANSAC. We performed experiments in the clustering and RANSAC stages, which showed that the proposed method performed better than state-of-the-art methods.