169 resultados para Klemens
Resumo:
The contribution of several individual ribozyme⋅substrate base pairs to binding and catalysis has been investigated using hammerhead ribozyme substrates that were truncated at their 3′ or 5′ ends. The base pairs at positions 1.1–2.1 and 15.2–16.2, which flank the conserved core, each contribute 104-fold in the chemical step, without affecting substrate binding. In contrast, base pairs distal to the core contribute to substrate binding but have no effect on the chemical step. These results suggest a “fraying model” in which each ribozyme⋅substrate helix can exist in either an unpaired (“open”) state or a helical (“closed”) state, with the closed state required for catalysis. The base pairs directly adjacent to the conserved core contribute to catalysis by allowing the closed state to form. Once the number of base pairs is sufficient to ensure that the closed helical state predominates, additional residues provide stabilization of the helix, and therefore increase binding, but have no further effect on the chemical step. Remarkably, the >5 kcal/mol free energy contribution to catalysis from each of the internal base pairs is considerably greater than the free energy expected for formation of a base pair. It is suggested that this unusually large energetic contribution arises because free energy that is typically lost in constraining residues within a base pair is expressed in the transition state, where it is used for positioning. This extends the concept of “intrinsic binding energy” from protein to RNA enzymes, suggesting that intrinsic binding energy is a fundamental feature of biological catalysis.
Resumo:
γ-Aminobutyric acid type B receptors (GABABRs) are involved in the fine tuning of inhibitory synaptic transmission. Presynaptic GABABRs inhibit neurotransmitter release by down-regulating high-voltage activated Ca2+ channels, whereas postsynaptic GABABRs decrease neuronal excitability by activating a prominent inwardly rectifying K+ (Kir) conductance that underlies the late inhibitory postsynaptic potentials. Here we report the cloning and functional characterization of two human GABABRs, hGABABR1a (hR1a) and hGABABR1b (hR1b). These receptors closely match the pharmacological properties and molecular weights of the most abundant native GABABRs. We show that in transfected mammalian cells hR1a and hR1b can modulate heteromeric Kir3.1/3.2 and Kir3.1/3.4 channels. Heterologous expression therefore supports the notion that Kir3 channels are the postsynaptic effectors of GABABRs. Our data further demonstrate that in principle either of the cloned receptors could mediate inhibitory postsynaptic potentials. We find that in the cerebellum hR1a and hR1b transcripts are largely confined to granule and Purkinje cells, respectively. This finding supports a selective association of hR1b, and not hR1a, with postsynaptic Kir3 channels. The mapping of the GABABR1 gene to human chromosome 6p21.3, in the vicinity of a susceptibility locus (EJM1) for idiopathic generalized epilepsies, identifies a candidate gene for inherited forms of epilepsy.
Resumo:
The human turn-taking system regulates the smooth and precise exchange of speaking turns during face-to-face interaction. Recent studies investigated the processing of ongoing turns during conversation by measuring the eye movements of noninvolved observers. The findings suggest that humans shift their gaze in anticipation to the next speaker before the start of the next turn. Moreover, there is evidence that the ability to timely detect turn transitions mainly relies on the lexico-syntactic content provided by the conversation. Consequently, patients with aphasia, who often experience deficits in both semantic and syntactic processing, might encounter difficulties to detect and timely shift their gaze at turn transitions. To test this assumption, we presented video vignettes of natural conversations to aphasic patients and healthy controls, while their eye movements were measured. The frequency and latency of event-related gaze shifts, with respect to the end of the current turn in the videos, were compared between the two groups. Our results suggest that, compared with healthy controls, aphasic patients have a reduced probability to shift their gaze at turn transitions but do not show significantly increased gaze shift latencies. In healthy controls, but not in aphasic patients, the probability to shift the gaze at turn transition was increased when the video content of the current turn had a higher lexico-syntactic complexity. Furthermore, the results from voxel-based lesion symptom mapping indicate that the association between lexico-syntactic complexity and gaze shift latency in aphasic patients is predicted by brain lesions located in the posterior branch of the left arcuate fasciculus. Higher lexico-syntactic processing demands seem to lead to a reduced gaze shift probability in aphasic patients. This finding may represent missed opportunities for patients to place their contributions during everyday conversation.
Resumo:
We simulate the 3D ozone distribution of a tidally locked Earth-like exoplanet using the high-resolution, 3D chemistry climate model CESM1(WACCM) and study how the ozone layer of a tidally locked Earth (TLE) (ΩTLE = 1/365 days) differs from that of our present-day Earth (PDE) (ΩPDE = 1/1 day). The middle atmosphere reaches a steady state a symptotically within the first 80 days of the simulation. An upwelling, centred on the subsolar point, is present on the day side while a downwelling, centred on the antisolar point, is present on the night side. In the mesosphere, we find similar global ozone distributions for the TLE and the PDE, with decreased ozone on the day side and enhanced ozone on the night side. In the lower mesosphere, a jet stream transitions into a large-scale vortex around a low-pressure system, located at low latitudes of the TLE night side. In the middle stratosphere, the concentration of odd oxygen is approximately equal to that of the ozone [(Ox) ≈ (O3)]. At these altitudes, the lifetime of odd oxygen is ~16 h and the transport processes significantly contribute to the global distribution of stratospheric ozone. Compared to the PDE, where the strong Coriolis force acts as a mixing barrier between low and high latitudes, the transport processes of the TLE are governed by jet streams variable in the zonal and meridional directions. In the middle stratosphere of the TLE, we find high ozone values on the day side, due to the increased production of atomic oxygen on the day side, where it immediately recombines with molecular oxygen to form ozone. In contrast, the ozone is depleted on the night side, due to changes in the solar radiation distribution and the presence of a downwelling. As a result of the reduced Coriolis force, the tropical and extratropical air masses are well mixed and the global temperature distribution of the TLE stratosphere has smaller horizontal gradients than the PDE. Compared to the PDE, the total ozone column global mean is reduced by ~19.3 %. The day side and the night side total ozone column means are reduced by 23.21 and 15.52 %, respectively. Finally, we present the total ozone column (TOC) maps as viewed by a remote observer for four phases of the TLE during its revolution around the star. The mean TOC values of the four phases of the TLE vary by up to 23 %.
Resumo:
The Weddell Sea and the associated Filchner-Rønne Ice Shelf constitute key regions for global bottomwater production today. However, little is known about bottom-water production under different climate and icesheet conditions. Therefore, we studied core PS1795, which consists primarily of fine-grained siliciclastic varves that were deposited on contourite ridges in the southeastern Weddell Sea during the Last Glacial Maximum (LGM). We conducted high-resolution X-ray fluorescence (XRF) analysis and grain-size measurements with the RADIUS tool (Seelos and Sirocko, 2005, doi:10.1111/j.1365-3091.2005.00715.x) using thin sections to characterize the two seasonal components of the varves at sub-mm resolution to distinguish the seasonal components of the varves. Bright layers contain coarser grains that can mainly be identified as quartz in the medium-to-coarse silt grain size. They also contain higher amounts of Si, Zr, Ca, and Sr, as well as more ice-rafted debris (IRD). Dark layers, on the other hand, contain finer particles such as mica and clay minerals from the chlorite and illite groups. In addition, Fe, Ti, Rb, and K are elevated. Based on these findings as well as on previous analyses on neighbouring cores, we propose a model of enhanced thermohaline convection in front of a grounded ice sheet that is supported by seasonally variable coastal polynya activity during the LGM. Accordingly, katabatic (i.e. offshore blowing) winds removed sea ice from the ice edge, leading to coastal polynya formation. We suggest that glacial processes were similar to today with stronger katabatic winds and enhanced coastal polynya activity during the winter season. Under these conditions, lighter coarser-grained layers are likely glacial winter deposits, when brine rejection was increased, leading to enhanced bottom-water formation and increased sediment transport. Vice versa, darker finer-grained layers were then deposited during less windier season, mainly during summer, when coastal polynya activity was likely reduced.
Resumo:
Drill cores are essential for the study of deep-sea sediments and on-land sites because often no suitable outcrop is available or accessible. These cores form the backbone of stratigraphical studies using and combining various dating techniques. Cyclostratigraphy is usually based on fast and inexpensive measurements of physical sediment properties. One indirect but highly valuable proxy for reconstructing the sediment composition and variability is sediment color. However, cracks and other disturbances in sediment cores may dramatically influence the quality of color data retrieved either directly from photospectrometry or derived from core image analysis. Here we present simple but powerful algorithms to extract color data from core images, and focus on routines to exclude cracks from these images. Results are discussed using the example of an ODP core from the Ceara Rise in the Central Atlantic. The crack correction approach presented highly improves the quality of color data and allows the easy incorporation of cracked cores into studies based on core images. This facilitates the quick and inexpensive generation of large color datasets directly from quantified core images, for cyclostratigraphy and other purposes.
Resumo:
Hemianopic reading impairment is a consequence of a visual field defect to either the right or the left side and is characterized by an increased reading time and reduced reading performance. Depending on the side of the visual field defect, reading will be affected differently: Patients suffering from a visual field defect to the right side have noticeable difficulties in reading fluently with slowing. Patients suffering from a visual field defect to the left usually struggle to find the beginning of a line and read more fluently. It was suggested in the literature that changing the reading direction from horizontal to vertical may be a training strategy to reduce reading problems in patients with hemianopia. The aim of the study was to investigate the influence of reading direction on reading speed in patients with left- or right-sided visual field defects and in healthy controls. METHOD In 13 patients with hemianopia and in 13 age-matched controls, reading speed was calculated for texts in standard as well as in clockwise rotated orientation of 90, 180, and 270°. RESULTS In both groups, text rotation reduced reading speed compared to standard reading. Patients with left-sided hemianopia had the greatest reduction after text rotation. Patients with right-sided hemianopia had the smallest speed reduction in 90° vertically rotated texts. CONCLUSIONS Text rotation has different effects in left- or right-sided hemianopia patients. For patients with left-sided heminanopia, rotation of the text may not be a helpful training strategy, for right-sided hemianopia vertical rotation of the text of 90° may be a beneficial training strategy to reduce reading deficits.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Series statement also appears as Veröffentlichungen der Historischen Kommission für Westfalen: on v. 2 it appears entry as Veröffentlichungen der Historischen Kommission für die Provinz Westfalen.