922 resultados para Kernel Linux TED Wi-Fi VoIP
Resumo:
In the multi-view approach to semisupervised learning, we choose one predictor from each of multiple hypothesis classes, and we co-regularize our choices by penalizing disagreement among the predictors on the unlabeled data. We examine the co-regularization method used in the co-regularized least squares (CoRLS) algorithm, in which the views are reproducing kernel Hilbert spaces (RKHS's), and the disagreement penalty is the average squared difference in predictions. The final predictor is the pointwise average of the predictors from each view. We call the set of predictors that can result from this procedure the co-regularized hypothesis class. Our main result is a tight bound on the Rademacher complexity of the co-regularized hypothesis class in terms of the kernel matrices of each RKHS. We find that the co-regularization reduces the Rademacher complexity by an amount that depends on the distance between the two views, as measured by a data dependent metric. We then use standard techniques to bound the gap between training error and test error for the CoRLS algorithm. Experimentally, we find that the amount of reduction in complexity introduced by co regularization correlates with the amount of improvement that co-regularization gives in the CoRLS algorithm.
Resumo:
Resolving a noted open problem, we show that the Undirected Feedback Vertex Set problem, parameterized by the size of the solution set of vertices, is in the parameterized complexity class Poly(k), that is, polynomial-time pre-processing is sufficient to reduce an initial problem instance (G, k) to a decision-equivalent simplified instance (G', k') where k' � k, and the number of vertices of G' is bounded by a polynomial function of k. Our main result shows an O(k11) kernelization bound.
Resumo:
A significant issue encountered when fusing data received from multiple sensors is the accuracy of the timestamp associated with each piece of data. This is particularly important in applications such as Simultaneous Localisation and Mapping (SLAM) where vehicle velocity forms an important part of the mapping algorithms; on fastmoving vehicles, even millisecond inconsistencies in data timestamping can produce errors which need to be compensated for. The timestamping problem is compounded in a robot swarm environment due to the use of non-deterministic readily-available hardware (such as 802.11-based wireless) and inaccurate clock synchronisation protocols (such as Network Time Protocol (NTP)). As a result, the synchronisation of the clocks between robots can be out by tens-to-hundreds of milliseconds making correlation of data difficult and preventing the possibility of the units performing synchronised actions such as triggering cameras or intricate swarm manoeuvres. In this thesis, a complete data fusion unit is designed, implemented and tested. The unit, named BabelFuse, is able to accept sensor data from a number of low-speed communication buses (such as RS232, RS485 and CAN Bus) and also timestamp events that occur on General Purpose Input/Output (GPIO) pins referencing a submillisecondaccurate wirelessly-distributed "global" clock signal. In addition to its timestamping capabilities, it can also be used to trigger an attached camera at a predefined start time and frame rate. This functionality enables the creation of a wirelessly-synchronised distributed image acquisition system over a large geographic area; a real world application for this functionality is the creation of a platform to facilitate wirelessly-distributed 3D stereoscopic vision. A ‘best-practice’ design methodology is adopted within the project to ensure the final system operates according to its requirements. Initially, requirements are generated from which a high-level architecture is distilled. This architecture is then converted into a hardware specification and low-level design, which is then manufactured. The manufactured hardware is then verified to ensure it operates as designed and firmware and Linux Operating System (OS) drivers are written to provide the features and connectivity required of the system. Finally, integration testing is performed to ensure the unit functions as per its requirements. The BabelFuse System comprises of a single Grand Master unit which is responsible for maintaining the absolute value of the "global" clock. Slave nodes then determine their local clock o.set from that of the Grand Master via synchronisation events which occur multiple times per-second. The mechanism used for synchronising the clocks between the boards wirelessly makes use of specific hardware and a firmware protocol based on elements of the IEEE-1588 Precision Time Protocol (PTP). With the key requirement of the system being submillisecond-accurate clock synchronisation (as a basis for timestamping and camera triggering), automated testing is carried out to monitor the o.sets between each Slave and the Grand Master over time. A common strobe pulse is also sent to each unit for timestamping; the correlation between the timestamps of the di.erent units is used to validate the clock o.set results. Analysis of the automated test results show that the BabelFuse units are almost threemagnitudes more accurate than their requirement; clocks of the Slave and Grand Master units do not di.er by more than three microseconds over a running time of six hours and the mean clock o.set of Slaves to the Grand Master is less-than one microsecond. The common strobe pulse used to verify the clock o.set data yields a positive result with a maximum variation between units of less-than two microseconds and a mean value of less-than one microsecond. The camera triggering functionality is verified by connecting the trigger pulse output of each board to a four-channel digital oscilloscope and setting each unit to output a 100Hz periodic pulse with a common start time. The resulting waveform shows a maximum variation between the rising-edges of the pulses of approximately 39¥ìs, well below its target of 1ms.
Resumo:
Modelling video sequences by subspaces has recently shown promise for recognising human actions. Subspaces are able to accommodate the effects of various image variations and can capture the dynamic properties of actions. Subspaces form a non-Euclidean and curved Riemannian manifold known as a Grassmann manifold. Inference on manifold spaces usually is achieved by embedding the manifolds in higher dimensional Euclidean spaces. In this paper, we instead propose to embed the Grassmann manifolds into reproducing kernel Hilbert spaces and then tackle the problem of discriminant analysis on such manifolds. To achieve efficient machinery, we propose graph-based local discriminant analysis that utilises within-class and between-class similarity graphs to characterise intra-class compactness and inter-class separability, respectively. Experiments on KTH, UCF Sports, and Ballet datasets show that the proposed approach obtains marked improvements in discrimination accuracy in comparison to several state-of-the-art methods, such as the kernel version of affine hull image-set distance, tensor canonical correlation analysis, spatial-temporal words and hierarchy of discriminative space-time neighbourhood features.
Resumo:
Smartphones are steadily gaining popularity, creating new application areas as their capabilities increase in terms of computational power, sensors and communication. Emerging new features of mobile devices give opportunity to new threats. Android is one of the newer operating systems targeting smartphones. While being based on a Linux kernel, Android has unique properties and specific limitations due to its mobile nature. This makes it harder to detect and react upon malware attacks if using conventional techniques. In this paper, we propose an Android Application Sandbox (AASandbox) which is able to perform both static and dynamic analysis on Android programs to automatically detect suspicious applications. Static analysis scans the software for malicious patterns without installing it. Dynamic analysis executes the application in a fully isolated environment, i.e. sandbox, which intervenes and logs low-level interactions with the system for further analysis. Both the sandbox and the detection algorithms can be deployed in the cloud, providing a fast and distributed detection of suspicious software in a mobile software store akin to Google's Android Market. Additionally, AASandbox might be used to improve the efficiency of classical anti-virus applications available for the Android operating system.
Resumo:
Our daily lives become more and more dependent upon smartphones due to their increased capabilities. Smartphones are used in various ways, e.g. for payment systems or assisting the lives of elderly or disabled people. Security threats for these devices become more and more dangerous since there is still a lack of proper security tools for protection. Android emerges as an open smartphone platform which allows modification even on operating system level and where third-party developers first time have the opportunity to develop kernel-based low-level security tools. Android quickly gained its popularity among smartphone developers and even beyond since it bases on Java on top of "open" Linux in comparison to former proprietary platforms which have very restrictive SDKs and corresponding APIs. Symbian OS, holding the greatest market share among all smartphone OSs, was even closing critical APIs to common developers and introduced application certification. This was done since this OS was the main target for smartphone malwares in the past. In fact, more than 290 malwares designed for Symbian OS appeared from July 2004 to July 2008. Android, in turn, promises to be completely open source. Together with the Linux-based smartphone OS OpenMoko, open smartphone platforms may attract malware writers for creating malicious applications endangering the critical smartphone applications and owners privacy. Since signature-based approaches mainly detect known malwares, anomaly-based approaches can be a valuable addition to these systems. They base on mathematical algorithms processing data that describe the state of a certain device. For gaining this data, a monitoring client is needed that has to extract usable information (features) from the monitored system. Our approach follows a dual system for analyzing these features. On the one hand, functionality for on-device light-weight detection is provided. But since most algorithms are resource exhaustive, remote feature analysis is provided on the other hand. Having this dual system enables event-based detection that can react to the current detection need. In our ongoing research we aim to investigates the feasibility of light-weight on-device detection for certain occasions. On other occasions, whenever significant changes are detected on the device, the system can trigger remote detection with heavy-weight algorithms for better detection results. In the absence of the server respectively as a supplementary approach, we also consider a collaborative scenario. Here, mobile devices sharing a common objective are enabled by a collaboration module to share information, such as intrusion detection data and results. This is based on an ad-hoc network mode that can be provided by a WiFi or Bluetooth adapter nearly every smartphone possesses.
Resumo:
This paper presents a new framework for distributed intrusion detection based on taint marking. Our system tracks information flows between applications of multiple hosts gathered in groups (i.e., sets of hosts sharing the same distributed information flow policy) by attaching taint labels to system objects such as files, sockets, Inter Process Communication (IPC) abstractions, and memory mappings. Labels are carried over the network by tainting network packets. A distributed information flow policy is defined for each group at the host level by labeling information and defining how users and applications can legally access, alter or transfer information towards other trusted or untrusted hosts. As opposed to existing approaches, where information is most often represented by two security levels (low/high, public/private, etc.), our model identifies each piece of information within a distributed system, and defines their legal interaction in a fine-grained manner. Hosts store and exchange security labels in a peer to peer fashion, and there is no central monitor. Our IDS is implemented in the Linux kernel as a Linux Security Module (LSM) and runs standard software on commodity hardware with no required modification. The only trusted code is our modified operating system kernel. We finally present a scenario of intrusion in a web service running on multiple hosts, and show how our distributed IDS is able to report security violations at each host level.
Resumo:
A critical requirement for safe autonomous navigation of a planetary rover is the ability to accurately estimate the traversability of the terrain. This work considers the problem of predicting the attitude and configuration angles of the platform from terrain representations that are often incomplete due to occlusions and sensor limitations. Using Gaussian Processes (GP) and exteroceptive data as training input, we can provide a continuous and complete representation of terrain traversability, with uncertainty in the output estimates. In this paper, we propose a novel method that focuses on exploiting the explicit correlation in vehicle attitude and configuration during operation by learning a kernel function from vehicle experience to perform GP regression. We provide an extensive experimental validation of the proposed method on a planetary rover. We show significant improvement in the accuracy of our estimation compared with results obtained using standard kernels (Squared Exponential and Neural Network), and compared to traversability estimation made over terrain models built using state-of-the-art GP techniques.
Resumo:
This paper proposes a highly reliable fault diagnosis approach for low-speed bearings. The proposed approach first extracts wavelet-based fault features that represent diverse symptoms of multiple low-speed bearing defects. The most useful fault features for diagnosis are then selected by utilizing a genetic algorithm (GA)-based kernel discriminative feature analysis cooperating with one-against-all multicategory support vector machines (OAA MCSVMs). Finally, each support vector machine is individually trained with its own feature vector that includes the most discriminative fault features, offering the highest classification performance. In this study, the effectiveness of the proposed GA-based kernel discriminative feature analysis and the classification ability of individually trained OAA MCSVMs are addressed in terms of average classification accuracy. In addition, the proposedGA- based kernel discriminative feature analysis is compared with four other state-of-the-art feature analysis approaches. Experimental results indicate that the proposed approach is superior to other feature analysis methodologies, yielding an average classification accuracy of 98.06% and 94.49% under rotational speeds of 50 revolutions-per-minute (RPM) and 80 RPM, respectively. Furthermore, the individually trained MCSVMs with their own optimal fault features based on the proposed GA-based kernel discriminative feature analysis outperform the standard OAA MCSVMs, showing an average accuracy of 98.66% and 95.01% for bearings under rotational speeds of 50 RPM and 80 RPM, respectively.
Resumo:
In this paper, we aim at predicting protein structural classes for low-homology data sets based on predicted secondary structures. We propose a new and simple kernel method, named as SSEAKSVM, to predict protein structural classes. The secondary structures of all protein sequences are obtained by using the tool PSIPRED and then a linear kernel on the basis of secondary structure element alignment scores is constructed for training a support vector machine classifier without parameter adjusting. Our method SSEAKSVM was evaluated on two low-homology datasets 25PDB and 1189 with sequence homology being 25% and 40%, respectively. The jackknife test is used to test and compare our method with other existing methods. The overall accuracies on these two data sets are 86.3% and 84.5%, respectively, which are higher than those obtained by other existing methods. Especially, our method achieves higher accuracies (88.1% and 88.5%) for differentiating the α + β class and the α/β class compared to other methods. This suggests that our method is valuable to predict protein structural classes particularly for low-homology protein sequences. The source code of the method in this paper can be downloaded at http://math.xtu.edu.cn/myphp/math/research/source/SSEAK_source_code.rar.
Resumo:
Error estimates for the error reproducing kernel method (ERKM) are provided. The ERKM is a mesh-free functional approximation scheme [A. Shaw, D. Roy, A NURBS-based error reproducing kernel method with applications in solid mechanics, Computational Mechanics (2006), to appear (available online)], wherein a targeted function and its derivatives are first approximated via non-uniform rational B-splines (NURBS) basis function. Errors in the NURBS approximation are then reproduced via a family of non-NURBS basis functions, constructed using a polynomial reproduction condition, and added to the NURBS approximation of the function obtained in the first step. In addition to the derivation of error estimates, convergence studies are undertaken for a couple of test boundary value problems with known exact solutions. The ERKM is next applied to a one-dimensional Burgers equation where, time evolution leads to a breakdown of the continuous solution and the appearance of a shock. Many available mesh-free schemes appear to be unable to capture this shock without numerical instability. However, given that any desired order of continuity is achievable through NURBS approximations, the ERKM can even accurately approximate functions with discontinuous derivatives. Moreover, due to the variation diminishing property of NURBS, it has advantages in representing sharp changes in gradients. This paper is focused on demonstrating this ability of ERKM via some numerical examples. Comparisons of some of the results with those via the standard form of the reproducing kernel particle method (RKPM) demonstrate the relative numerical advantages and accuracy of the ERKM.
Resumo:
Kernel weight is an important factor determining grain yield and nutritional quality in sorghum, yet the developmental processes underlying the genotypic differences in potential kernel weight remain unclear. The aim of this study was to determine the stage in development at which genetic effects on potential kernel weight were realized, and to investigate the developmental mechanisms by which potential kernel weight is controlled in sorghum. Kernel development was studied in two field experiments with five genotypes known to differ in kernel weight at maturity. Pre-fertilization floret and ovary development was examined and post-fertilization kernel-filling characteristics were analysed. Large kernels had a higher rate of kernel filling and contained more endosperm cells and starch granules than normal-sized kernels. Genotypic differences in kernel development appeared before stamen primordia initiation in the developing florets, with sessile spikelets of large-seeded genotypes having larger floret apical meristems than normal-seeded genotypes. At anthesis, the ovaries for large-sized kernels were larger in volume, with more cells per layer and more vascular bundles in the ovary wall. Across experiments and genotypes, there was a significant positive correlation between kernel dry weight at maturity and ovary volume at anthesis. Genotypic effects on meristem size, ovary volume, and kernel weight were all consistent with additive genetic control, suggesting that they were causally related. The pre-fertilization genetic control of kernel weight probably operated through the developing pericarp, which is derived from the ovary wall and potentially constrains kernel expansion.
Resumo:
The use of near infrared (NIR) hyperspectral imaging and hyperspectral image analysis for distinguishing between hard, intermediate and soft maize kernels from inbred lines was evaluated. NIR hyperspectral images of two sets (12 and 24 kernels) of whole maize kernels were acquired using a Spectral Dimensions MatrixNIR camera with a spectral range of 960-1662 nm and a sisuChema SWIR (short wave infrared) hyperspectral pushbroom imaging system with a spectral range of 1000-2498 nm. Exploratory principal component analysis (PCA) was used on absorbance images to remove background, bad pixels and shading. On the cleaned images. PCA could be used effectively to find histological classes including glassy (hard) and floury (soft) endosperm. PCA illustrated a distinct difference between glassy and floury endosperm along principal component (PC) three on the MatrixNIR and PC two on the sisuChema with two distinguishable clusters. Subsequently partial least squares discriminant analysis (PLS-DA) was applied to build a classification model. The PLS-DA model from the MatrixNIR image (12 kernels) resulted in root mean square error of prediction (RMSEP) value of 0.18. This was repeated on the MatrixNIR image of the 24 kernels which resulted in RMSEP of 0.18. The sisuChema image yielded RMSEP value of 0.29. The reproducible results obtained with the different data sets indicate that the method proposed in this paper has a real potential for future classification uses.
Resumo:
Development and evaluation of a single kernel NIR assessment method for improving baley malting quality QTL identification.
Resumo:
Probiotic supplements are single or mixed strain cultures of live microorganisms that benefit the host by improving the properties of the indigenous microflora (Seo et al 2010). In a pilot study at the University of Queensland, Norton et al (2008) found that Bacillus amyloliquefaciens Strain H57 (H57), primarily investigated as an inoculum to make high-quality hay, improved feed intake and nitrogen utilisation over several weeks in pregnant ewes. The purpose of the following study was to further challenge the potential of H57 -to show it survives the steam-pelleting process, and that it improves the performance of ewes fed pellets based on an agro-industrial by-product with a reputation for poor palatability, palm kernel meal (PKM), (McNeill 2013). Thirty-two first-parity White Dorper ewes (day 37 of pregnancy, mean liveweight = 47.3 kg, mean age = 15 months) were inducted into individual pens in the animal house at the University of Queensland, Gatton. They were adjusted onto PKM-based pellets (g/kg drymatter (DM): PKM, 408; sorghum, 430; chick pea hulls, 103; minerals and vitamins; Crude protein, 128; ME: 11.1MJ/kg DM) until day 89 of pregnancy and thereafter fed a predominately pelleted diet incorporating with or without H57 spores (10 9 colony forming units (cfu)/kg pellet, as fed), plus 100g/ewe/day oaten chaff, until day 7 of lactation. From day 7 to 20 of lactation the pelleted component of the diet was steadily reduced to be replaced by a 50:50 mix of lucerne: oaten chaff, fed ad libitum, plus 100g/ewe/day of ground sorghum grain with or without H57 (10 9 cfu/ewe/day). The period of adjustment in pregnancy (day 37-89) extended beyond expectations due to some evidence of mild ruminal acidosis after some initially high intakes that were followed by low intakes. During that time the diet was modified, in an attempt to improve palatability, by the addition of oaten chaff and the removal of an acidifying agent (NH4Cl) that was added initially to reduce the risk of urinary calculi. Eight ewes were removed due to inappetence, leaving 24 ewes to start the trial at day 90 of pregnancy. From day 90 of pregnancy until day 63 of lactation, liveweights of the ewes and their lambs were determined weekly and at parturition. Feed intakes of the ewes were determined weekly. Once lambing began, 1 ewe was removed as it gave birth to twin lambs (whereas the rest gave birth to a single lamb), 4 due to the loss of their lambs (2 to dystocia), and 1 due to copper toxicity. The PKM pellets were suspected to be the cause of the copper toxicity and so were removed in early lactation. Hence, the final statistical analysis using STATISTICA 8 (Repeated measures ANOVA for feed intake, One-way ANOVA for liveweight change and birth weight) was completed on 23 ewes for the pregnancy period (n = 11 fed H57; n = 12 control), and 18 ewes or lambs for the lactation period (n = 8 fed H57; n = 10 control). From day 90 of pregnancy until parturition the H57 supplemented ewes ate 17 more DM (g/day: 1041 vs 889, sed = 42.4, P = 0.04) and gained more liveweight (g/day: 193 vs 24.0, sed = 25.4, P = 0.0002), but produced lambs with a similar birthweight (kg: 4.18 vs 3.99, sed = 0.19, P = 0.54). Over the 63 days of lactation the H57 ewes ate similar amounts of DM but grew slower than the control ewes (g/day: 1.5 vs 97.0, sed = 21.7, P = 0.012). The lambs of the H57 ewes grew faster than those of the control ewes for the first 21 days of lactation (g/day: 356 vs 265, sed = 16.5, P = 0.006). These data support the findings of Norton et al (2008) and Kritas et al (2006) that certain Bacillus spp. supplements can improve the performance of pregnant and lactating ewes. In the current study we particularly highlighted the capacity of H57 to stimulate immature ewes to continue to grow maternal tissue through pregnancy, possibly through an enhanced appetite, which appeared then to stimulate a greater capacity to partition nutrients to their lambs through milk, at least for the first few weeks of lactation, a critical time for optimising lamb survival. To conclude, H57 can survive the steam pelleting process to improve feed intake and maternal liveweight gain in late pregnancy, and performance in early lactation, of first-parity ewes fed a diet based on PKM.