937 resultados para Kamehameha I, the Great, King of the Hawaiian Islands, d. 1819
Resumo:
A reduction in native fish stocks and the need to increase fish production for food, recreation, ornamental purposes and to control disease vectors and weeds have often justified and led to introduction of non-native fishes. Some of these introductions have been followed by benefitial and others by undesirable consequences. For instance introduction of the Nile perch Lates niloticus L. and several tilapiine species into lakes Victoria and Kyoga, and the clupeid Limnothrissa miodon into lakes Kariba and Kivu have resulted in increases in the quantity of fish available to the people around them. Predation by Nile perch and competition with introduced tilapiine species in lakes victoria and Kyoga have caused a severe decline and in some cases total disappearance of many of the native fish species.therefore the concern about fish introductions arises
Resumo:
The North Atlantic spring bloom is one of the largest annual biological events in the ocean, and is characterized by dominance transitions from siliceous (diatoms) to calcareous (coccolithophores) algal groups. To study the effects of future global change on these phytoplankton and the biogeochemical cycles they mediate, a shipboard continuous culture experiment (Ecostat) was conducted in June 2005 during this transition period. Four treatments were examined: (1) 12 degrees C and 390 ppm CO2 (ambient control), (2) 12 degrees C and 690 ppm CO2 (high pCO(2)) (3) 16 degrees C and 390 ppm CO2 (high temperature), and (4) 16 degrees C and 690 ppm CO2 ('greenhouse'). Nutrient availability in all treatments was designed to reproduce the low silicate conditions typical of this late stage of the bloom. Both elevated pCO(2) and temperature resulted in changes in phytoplankton community structure. Increased temperature promoted whole community photosynthesis and particulate organic carbon (POC) production rates per unit chlorophyll a. Despite much higher coccolithophore abundance in the greenhouse treatment, particulate inorganic carbon production (calcification) was significantly decreased by the combination of increased pCO(2) and temperature. Our experiments suggest that future trends during the bloom could include greatly reduced export of calcium carbonate relative to POC, thus providing a potential negative feedback to atmospheric CO2 concentration. Other trends with potential climate feedback effects include decreased community biogenic silica to POC ratios at higher temperature. These shipboard experiments suggest the need to examine whether future pCO2 and temperature increases on longer decadal timescales will similarly alter the biological and biogeochemical dynamics of the North Atlantic spring bloom.
Resumo:
Mesoporous spinel membranes as ultrafiltration membranes were prepared through a novel sol-gel technique. By in situ modification of the sol particle surface during the sol-gel process, control of the material structure on a nanometer scale from the earliest stages of processing was realized. Nano-particles with a chocolate-nut-like morphology, i.e. spinel MgAl2O4 as a shell and gamma -Al2O3 as a core, were first revealed by HRTEM results. The formation of the spinel phase was confirmed by X-ray diffraction (XRD). N-2 adsorption-desorption results showed that the mesoporous membranes had a narrow pore size distribution. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Gillmore, G. Gilbertson, D. Grattan, J. Hunt, C. McLaren, S. Pyatt, B. Banda, R. Barker, G. Denman, A. Phillips, P. Reynolds, T. The potential risk from 222radon posed to archaeologists and earth scientists: reconnaissance study of radon concentrations, excavations and archaeological shelters in the Great cave of Niah, Sarawak, Malaysia. Ecotoxicology and Environmental Safety. 2005. 60 pp 213-227.
Resumo:
http://www.archive.org/details/historicalsketch00bartiala
Resumo:
http://www.archive.org/details/evangelicalmiss00niebuoft/
Resumo:
http://www.archive.org/details/portraitsofameri00hawarich
Resumo:
The X-ray crystal structures of (I), the base 4030W92, 5-(2,3-dichlorophenyl)-2,4-diamino-6-fluoromethyl-pyrimidine, C11H9Cl2FN4, and (II) 227C89, the methanesulphonic acid salt of 5-(2,6-dichlorophenyl)-1-H-2,4-diamino-6-methyl-pyrimidine, C11H11Cl2N4 center dot CH3O3S, have been carried out at low temperature. A detailed comparison of the two structures is given. Structure (I) is non-centrosymmetric, crystallizing in space group P2(1) with unit cell a = 10.821(3), b = 8.290(3), c = 13.819(4) angstrom, beta = 105.980(6)degrees, V = 1191.8(6) angstrom(3), Z = 4 (two molecules per asymmetric unit) and density (calculated) = 1.600 mg/m(3). Structure (II) crystallizes in the triclinic space group P (1) over bar with unit cell a = 7.686(2), b = 8.233(2), c = 12.234(2) angstrom, alpha = 78.379(4), beta = 87.195(4), gamma = 86.811(4)degrees, V = 756.6(2) angstrom(3), Z = 2, density (calculated) = 1.603 mg/m(3). Final R indices [I > 2sigma(I)] are R1 = 0.0572, wR2 = 0.1003 for (I) and R1 = 0.0558, wR2 = 0.0982 for (II). R indices (all data) are R1 = 0.0983, wR2 = 0.1116 for (I) and R1 = 0.1009, wR2 = 0.1117 for (II). 5- Phenyl-2,4 diaminopyrimidine and 6-phenyl-1,2,4 triazine derivatives, which include lamotrigine (3,5-diamino-6-(2,3-dichlorophenyl)-1,2,4-triazine), have been investigated for some time for their effects on the central nervous system. The three dimensional structures reported here form part of a newly developed data base for the detailed investigation of members of this structural series and their biological activities.
Resumo:
Drugs based on 5-phenyl-2,4 diamino pyrimidine and 6-phenyl-1,2,4 triazine derivatives are well known for their effects on the central nervous system. The study presented here provides detailed crystal structures of two pyrimidine derivatives which have neuroprotective properties in models of both grey and white matter ischemia. Recently published studies suggest that the compounds lamotrigine (a triazine derivative), and the two pyrimidines BW1003C87 (I) and sipatrigine (II) mediate their primary in vivo mode of action by inhibiting voltage-gated Na+ channels. The X-ray crystal structures will contribute valuable data for applications involving binding and modelling studies of the biological actions of these drugs.