923 resultados para KOH electrolyte
Resumo:
Electrochemical properties of rare earth AB(3)-type hydrogen storage alloys as negative electrode material and a polymer instead of 6 M KOH aqueous solution as solid state electrolyte in MH-Ni battery have been investigated at room temperature and 28degreesC first time. The partial replacement of Ni by Al and Mn elements increases the specific capacity and cycle stability of the alloy.
Resumo:
Heterogeneous electron transfer rate constants (k(s)) and diffusion coefficients (D) of the ferrocene and its derivatives. in a new synthetic comb polymer solvent, poly(dimethylsiloxane-g-monomethylether polyethylene glycol) (SCP), and several other polymer solvents were estimated by using microelectrodes. Also, the influence of various supporting electrolytes on k(s) and D of ferrocene was studied. It was shown that k(s) and D of ferrocene decreased with increasing anionic size of the supporting electrolyte, but k(s) tended to increase with increasing radius of the solvated cation. Also, the cationic size of the supporting electrolytes had little effects on D. The values of k(s) and D for the ferrocene derivatives in the polymer solvents were in sharp contrast to those in monomeric solvents. Thus. the k(s) values were proportional to D in the polymer solvents. which indicates that solvent dynamics control of the electrode reaction. The values of k(s) and D of ferrocene in SCP were larger than those in other polymer solvents indicating that SCP is a good polymer solvent. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Using poly(styrene-co-maleic anhydride) as the backbone and poly(ethylene glycol) methyl ether as side chains,three kinds of comblike polymers of different side chain length were synthesized. The Li-salt complexes and their firms were prepared. The dynamic mechanical properties were investigated. It was found that the main chain was rigid and the side chain was flexible in this comblike polymer system. Based on the time-temperature equivalence principle, a master curve was constructed. By selecting T-alpha as reference temperature, Arrhenius plots of shift factor and iso-free-volume plots were attained. The values of WLF parameters C-1 and C-2 increase with increasing salt concentration. By reference to T-0 = 50 degrees C, the relation between the average relaxation time 1g tau(c) and Li-salt concentration C is linear. The master curves are displaced progressively to higher frequencies as the M-w of side chains is increased. The relation between the average relaxation time 1g tau(n) and M-w of side chains is also linear. And the master curves are movable with the change of salts. It shows the effect of different kinds of salt on relaxation time.
Resumo:
The comblike polymers based on poly (styrene-co-maleic anhydride) backbone with poly (ethylene glycol) methyl ether as side chains were synthesized and characterized by H-1 NMR. with the result compared with that of 1R. It is found that it is both feasible and simple to synthesize this kind of compounds with the help of H-1 NMR.
Resumo:
A composite polymer electrolyte of Polyethylene oxide (PEO)-LiClO4 containing fine Al2O3 particles was studied by using differential scanning calorimetry, infrared spectroscopy and electrochemical impedance spectroscopy. Compared with the polymer electrolyte without Al2O3 particles, the glass transition temperature and the degree of crystallinity were decreased, and the room temperature conductivity of PEO-LiClO4-Al2O3 composite polymer electrolyte was considerably enhanced. Moreover, the equivalent circuits and the effect of dc potential on impedance spectroscopy were discussed.
Resumo:
A composite solid polymer electrolyte (SPE) of (PEO)(10)LiClO4-Al2O3 was prepared and Pt and stainless steel(SS) blocking electrodes were used for an impedance study. It was found that the semicircle in the high frequency range and the straight line in the low frequency range depend upon different blocking electrodes and polarization potentials applied in the experiments. In the equivalent circuit. two constant phase elements (CPE) have been used instead of the pure geometrical and double layer capacitances. respectively. A theoretical line calculated from their estimated values has a good correlation with the experiment data. Moreover. the equivalent circuit also can be used to explain the impedance properties of Pt and stainless steel (SS) blocking electrodes both in the high and the low frequency ranges. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Using poly(styrene-co-maleic anhydride) as a backbone and poly(ethylene glycol) methyl ether (PEGME) with different molecular weights as side chains, three comb-like polymers and their Li salt complexes were synthesized. The dynamic mechanical properties and conductivities were investigated. Results showed that the polymer electrolytes possess two glass transitions: alpha -transition and beta -transition, and the temperature dependence of the ionic conductivity shows WLF (Williams-Landel-Ferry) behavior. Based on the time-temperature equivalence principle, a master curve was constructed by selecting T-beta as reference temperature. The values of the WLF parameters (C-1 and C-2) were obtained and were found to be almost independent of the length of the PEGME side chain and the content of Li salt. By reference to T-0 = 50 degreesC. the relation between log tau (c) and c was found to be linear. The master curves are displaced progressively to higher frequencies as the molecular weight of the side chain is increased. The relation between log tau (n) and the molecular weight of the side chain is also linear. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
In-situ microscopic FTIR spectroelectrochemical technique(MFTIRs) was applied to studying the electrochemical oxidation of ascorbic acid(AA) in poly(ethylene glycol)(PEG) paste at a 100 mu m diameter Pt disk electrode. Using this technique, the catalytic ability of cobalt hexacyanoferrate(CoHCF) microcrystalline toward AA oxidation was also studied, it was found that the dispersed CoHCF powder in the PEG paste can generate well-shaped thin-layer cyclic voltammetric waves with the peak height proportional to the scan rate, corresponding to the Fe centered redox reactions. This oxidation step catalyzed the AA oxidation. Also, this pasted CoHCF powder generated well-resolved in-situ MFTIRs spectra, by which a chemical interaction between C = C bond of AA ring and CoHCF lattice was revealed. A corresponding surface docking mechanism for the catalytic reaction has been proposed.
Resumo:
Cyclic voltammetry and in-situ microscopic FTIR spectroelectrochemistry were used for the electrochemical and vibrational characterizations of the reduction process of K3Fe (CN)(6) in polyethylene glycol(PEG) with LiClO4 as supporting electrolyte at a Pt microelectrode. The rate of electron transfer is a function of the concentration of the supporting electrolyte. The redox potentials and cyclic voltammetric currents vary with Li/O molar ratio. The bl-situ spectroelectrochemistry shows that the infrared spectra are influenced by the concentration of LiClO4. The bridging cyanide groups with a structure Fe-I-C drop N ... Fe-I-C drop N are formed during the reduction process of K3Fe (CN)(6). There may be an activated complex between the Lif cation and the complex anion.
Resumo:
In situ microscopic FTIR spectroelectrochemistry behavior of L-ascorbic acid (H(2)A) in polymer electrolyte is reported for the first time. H(2)A undergoes a two-step oxidation, The oxidation waves shift towards more anodic potential values when the scan rate increases. The peak currents of the oxidation waves are proportional to the square roots of scan rate up to 100 mV/s, The in situ infrared spectra suggest that the product of the oxidation be dehydroascorbic acid, which may exist as a dimer.
Resumo:
A comb-like polymer host(CBPE) as polymer electrolyte was synthesized by reacting poly(ethylene glycol) monomethyl ether (PEGME) with ethylene-maleic anhydride copolymer(EMAC) and endcapping the residual carboxylic acid with methanol. The synthetic process was followed by IR and the amorphous product characterized by IR and elemental analysis. There were two peaks in the plot of the ionic conductivity against Li salt concentration. The plot of log sigma vs. 1/(T - T-0) may exhibit dual VTF behavior when using the glass transition temperature of PEO of side chain as T-0. The comb-like polymer is a white rubbery solid which dissolves in acetone. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
The diffusion coefficients (D) of quinhydrone were estimated in polymer electrolytes by using non-steady-state chronoamperometry and steady-state current voltammetry. The D values have been estimated in polyethylene glycol (PEG) containing different concentrations, and cations of supporting electrolytes, and in different solvents over a range of temperatures. The dependencies of electroactive probe diffusion coefficients on temperature, supporting electrolyte concentration and polymer chain length are discussed. The results show that D increases with increasing temperature and decreasing concentration of supporting electrolyte. The diffusion coefficient depends strongly on the length of polymer chain and decreases sharply with increasing polymer chain length. The contribution of electron self-exchange has been explored and it seems to be negligible here. (C) 1998 Elsevier Science S.A.
Resumo:
The heterogeneous electron transfer rate constants (k(s)) of seven ferrocene derivatives were estimated using cyclic voltammograms under mixed spherical/semi-infinite linear diffusion and steady-state voltammetry at a microdisk electrode in polymer electrolyte. The k(s) and diffusion coefficient (D) are both 100 to 1000-fold smaller in polymer solvent than in monomeric solvents, and the D and k(s) decrease with increasing polymer chain length. The results conform to the difference of viscosity (eta) or relaxation time (tau(L)) for these different solvents. The k(s) and D increase with increasing temperature, and the activation barriers of the electrode reaction are obtained. The influences of the substituting group in the ferrocene ring on k(s) and D are discussed. The k(s) are proportional to the D of the ferrocene derivatives, which indicates that solvent dynamics control the electrode reaction. (C) 1998 Elsevier Science S.A.
Resumo:
Electrochemical behavior of the transfer of H+ across polypyrrole membrane (PPM) was studied. The transfer process was quasi-reversible and mainly diffusion-controlled. PPM electropolymerized in water solution has better reversibility than that in CH3CN solution for the transfer of H+. The transfer process of H+ across the two kinds of PPM indicated that the PPM electrochemically polymerized was of asymmetry.
Resumo:
The electrochemistry of Prussian blue mixed in a polymer medium containing MClO4 (M = Li+, Na+, K+, TBA(+)) as the supporting electrolyte was studied by means of solid-state voltammetry. This approach is new in Prussian blue studies. The behavior of PB in polymer electrolytes is somewhat similar to the well-known behavior for an electrochemically synthesized PB film in aqueous media. Besides, K+, Li+ and Na+ ions can also transport through the crystal of PB because of its zeolitic nature. The transport of TBA(+) ions is possible. Kinetic control lies in the diffusion of cations in and out of the lattice of Prussian blue. Reduction waves of Prussian blue depend on both the size and type of cations. PB is very stable upon electrochemical cycling in polymer electrolytes and air. This system may be used in rechargeable batteries and electrochromic devices.