918 resultados para Jute fiber
Resumo:
A fiber web is modeled as a three-dimensional random cylindrical fiber network. Nonlinear behavior of fluid flowing through the fiber network is numerically simulated by using the lattice Boltzmann (LB) method. A nonlinear relationship between the friction factor and the modified Reynolds number is clearly observed and analyzed by using the Fochheimer equation, which includes the quadratic term of velocity. We obtain a transition from linear to nonlinear region when the Reynolds numbers are sufficiently high, reflecting the inertial effect of the flows. The simulated permeability of such fiber network has relatively good agreement with the experimental results and finite element simulations.
Resumo:
Sandwich beams comprising identical face sheets and a square honeycomb core were manufactured from carbon fiber composite sheets. Analytical expressions were derived for four competing collapse mechanisms of simply supported and clamped sandwich beams in three-point bending: core shear, face microbuckling, face wrinkling, and indentation. Selected geometries of sandwich beams were tested to illustrate these collapse modes, with good agreement between analytic predictions and measurements of the failure load. Finite element (FE) simulations of the three-point bending responses of these beams were also conducted by constructing a FE model by laying up unidirectional plies in appropriate orientations. The initiation and growth of damage in the laminates were included in the FE calculations. With this embellishment, the FE model was able to predict the measured load versus displacement response and the failure sequence in each of the composite beams. © 2011 American Society of Mechanical Engineers.
Resumo:
We demonstrate passive mode-locking of a bismuth-doped fiber laser using a singlewall nanotube-based saturable absorber. Stable operation in the all-normal dispersion and average soliton regime is obtained, with an all-fiber integrated format. © 2010 Optical Society of America.
Resumo:
An investigation of fiber/matrix interfacial fracture energy is presented in this paper. Several existing theoretical expressions for the fracture energy of interfacial debonding are reviewed. For the single-fiber/matrix debonding and pull-out experimental model, a study is carried out on the effect of interfacial residual compressive stress and friction on interface cracking energy release rate.
Resumo:
A 2-D Hermite-Gaussian square launch is demonstrated to show improved systems capacity over multimode fiber links. It shows a bandwidth improvement over both center and offset launches and exhibits ±5 μm misalignment tolerance. © 2011 Optical Society of America.
Resumo:
Dynamics of single curved fiber sedimentation under gravity are simulated by using the lattice Boltzmann method. The results of migration and rotation of the curved fiber at different Reynolds numbers are reported. The results show that the rotation and migration processes are sensitive to the curvature of the fiber. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Lattice-type model can simulate in a straightforward manner heterogeneous brittle media. Mohr-Coulomb failure criterion has recently been involved into the generalized beam (GB) lattice model, and as a result, numerical experiments on concrete under various loading conditions can be conducted. The GB lattice model is further used to investigate the reinforced fiber/particle composites instead of only particle composites as the model did before. Numerical examples are given to show the effectiveness of the modeling procedure, and influences of inclusions (particle, fiber and rebar) on the fracture processes are also discussed. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Based on studies on the strain distribution in short-fiber/whisker reinforced metal matrix composites, a deformation characteristic parameter, lambda is defined as a ratio of root-mean-square strain of the reinforcers identically oriented to the macro-linear strain along the same direction. Quantitative relation between lambda and microstructure parameters of composites is obtained. By using lambda, the stiffness moduli of composites with arbitrary reinforcer orientation density function and under arbitrary loading condition are derived. The upper-bound and lower-bound of the present prediction are the same as those from the equal-strain theory and equal-stress theory, respectively. The present theory provides a physical explanation and theoretical base for the present commonly-used empirical formulae. Compared with the microscopic mechanical theories, the present theory is competent for stiffness modulus prediction of practical engineering composites in accuracy and simplicity.