207 resultados para Joc


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Indian monsoon is an important component of Earth's climate system, accurate forecasting of its mean rainfall being essential for regional food and water security. Accurate measurement of the rainfall is essential for various water-related applications, the evaluation of numerical models and detection and attribution of trends, but a variety of different gridded rainfall datasets are available for these purposes. In this study, six gridded rainfall datasets are compared against the India Meteorological Department (IMD) gridded rainfall dataset, chosen as the most representative of the observed system due to its high gauge density. The datasets comprise those based solely on rain gauge observations and those merging rain gauge data with satellite-derived products. Various skill scores and subjective comparisons are carried out for the Indian region during the south-west monsoon season (June to September). Relative biases and skill metrics are documented at all-India and sub-regional scales. In the gauge-based (land-only) category, Asian Precipitation-Highly-Resolved Observational Data Integration Towards Evaluation of water resources (APHRODITE) and Global Precipitation Climatology Center (GPCC) datasets perform better relative to the others in terms of a variety of skill metrics. In the merged category, the Global Precipitation Climatology Project (GPCP) dataset is shown to perform better than the Climate Prediction Center Merged Analysis of Precipitation (CMAP) for the Indian monsoon in terms of various metrics, when compared with the IMD gridded data. Most of the datasets have difficulty in representing rainfall over orographic regions including the Western Ghats mountains, in north-east India and the Himalayan foothills. The wide range of skill scores seen among the datasets and even the change of sign of bias found in some years are causes of concern. This uncertainty between datasets is largest in north-east India. These results will help those studying the Indian monsoon region to select an appropriate dataset depending on their application and focus of research.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A statistical–dynamical downscaling (SDD) approach for the regionalization of wind energy output (Eout) over Europe with special focus on Germany is proposed. SDD uses an extended circulation weather type (CWT) analysis on global daily mean sea level pressure fields with the central point being located over Germany. Seventy-seven weather classes based on the associated CWT and the intensity of the geostrophic flow are identified. Representatives of these classes are dynamically downscaled with the regional climate model COSMO-CLM. By using weather class frequencies of different data sets, the simulated representatives are recombined to probability density functions (PDFs) of near-surface wind speed and finally to Eout of a sample wind turbine for present and future climate. This is performed for reanalysis, decadal hindcasts and long-term future projections. For evaluation purposes, results of SDD are compared to wind observations and to simulated Eout of purely dynamical downscaling (DD) methods. For the present climate, SDD is able to simulate realistic PDFs of 10-m wind speed for most stations in Germany. The resulting spatial Eout patterns are similar to DD-simulated Eout. In terms of decadal hindcasts, results of SDD are similar to DD-simulated Eout over Germany, Poland, Czech Republic, and Benelux, for which high correlations between annual Eout time series of SDD and DD are detected for selected hindcasts. Lower correlation is found for other European countries. It is demonstrated that SDD can be used to downscale the full ensemble of the Earth System Model of the Max Planck Institute (MPI-ESM) decadal prediction system. Long-term climate change projections in Special Report on Emission Scenarios of ECHAM5/MPI-OM as obtained by SDD agree well to the results of other studies using DD methods, with increasing Eout over northern Europe and a negative trend over southern Europe. Despite some biases, it is concluded that SDD is an adequate tool to assess regional wind energy changes in large model ensembles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study investigates the relationship between the wind wave climate and the main climate modes of atmospheric variability in the North Atlantic Ocean. The modes considered are the North Atlantic Oscillation (NAO), the East Atlantic (EA) pattern, the East Atlantic Western Russian (EA/WR) pattern and the Scandinavian (SCAN) pattern. The wave dataset consists of buoys records, remote sensing altimetry observations and a numerical hindcast providing significant wave height (SWH), mean wave period (MWP) and mean wave direction (MWD) for the period 1989–2009. After evaluating the reliability of the hindcast, we focus on the impact of each mode on seasonal wave parameters and on the relative importance of wind-sea and swell components. Results demonstrate that the NAO and EA patterns are the most relevant, whereas EA/WR and SCAN patterns have a weaker impact on the North Atlantic wave climate variability. During their positive phases, both NAO and EA patterns are related to winter SWH at a rate that reaches 1 m per unit index along the Scottish coast (NAO) and Iberian coast (EA) patterns. In terms of winter MWD, the two modes induce a counterclockwise shift of up to 65° per negative NAO (positive EA) unit over west European coasts. They also increase the winter MWP in the North Sea and in the Bay of Biscay (up to 1 s per unit NAO) and along the western coasts of Europe and North Africa (1 s per unit EA). The impact of winter EA pattern on all wave parameters is mostly caused through the swell wave component.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The England and Wales precipitation (EWP) dataset is a homogeneous time series of daily accumulations from 1931 to 2014, composed from rain gauge observations spanning the region. The daily regional-average precipitation statistics are shown to be well described by a Weibull distribution, which is used to define extremes in terms of percentiles. Computed trends in annual and seasonal precipitation are sensitive to the period chosen, due to large variability on interannual and decadal timescales. Atmospheric circulation patterns associated with seasonal precipitation variability are identified. These patterns project onto known leading modes of variability, all of which involve displacements of the jet stream and storm-track over the eastern Atlantic. The intensity of daily precipitation for each calendar season is investigated by partitioning all observations into eight intensity categories contributing equally to the total precipitation in the dataset. Contrary to previous results based on shorter periods, no significant trends of the most intense categories are found between 1931 and 2014. The regional-average precipitation is found to share statistical properties common to the majority of individual stations across England and Wales used in previous studies. Statistics of the EWP data are examined for multi-day accumulations up to 10 days, which are more relevant for river flooding. Four recent years (2000, 2007, 2008 and 2012) have a greater number of extreme events in the 3-and 5-day accumulations than any previous year in the record. It is the duration of precipitation events in these years that is remarkable, rather than the magnitude of the daily accumulations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Temperature is a key variable for monitoring global climate change. Here we perform a trend analysis of Swiss temperatures from 1959 to 2008, using a new 2 × 2 km gridded data-set based on carefully homogenised ground observations from MeteoSwiss. The aim of this study is twofold: first, to discuss the spatial and altitudinal temperature trend characteristics in detail, and second, to quantify the contribution of changes in atmospheric circulation and local effects to these trends. The seasonal trends are all positive and mostly significant with an annual average warming rate of 0.35 °C/decade (∼1.6 times the northern hemispheric warming rate), ranging from 0.17 in autumn to 0.48 °C/decade in summer. Altitude-dependent trends are found in autumn and early winter where the trends are stronger at low altitudes (<800 m asl), and in spring where slightly stronger trends are found at altitudes close to the snow line. Part of the trends can be explained by changes in atmospheric circulation, but with substantial differences from season to season. In winter, circulation effects account for more than half the trends, while this contribution is much smaller in other seasons. After removing the effect of circulation, the trends still show seasonal variations with higher values in spring and summer. The circulation-corrected trends are closer to the values simulated by a set of ENSEMBLES regional climate models, with the models still tending towards a trend underestimation in spring and summer. Our results suggest that both circulation changes and more local effects are important to explain part of recent warming in spring, summer, and autumn. Snow-albedo feedback effects could be responsible for the stronger spring trends at altitudes close to the snow line, but the overall effect is small. In autumn, the observed decrease in fog frequency might be a key process in explaining the stronger temperature trends at low altitudes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A statistical-dynamical downscaling method is used to estimate future changes of wind energy output (Eout) of a benchmark wind turbine across Europe at the regional scale. With this aim, 22 global climate models (GCMs) of the Coupled Model Intercomparison Project Phase 5 (CMIP5) ensemble are considered. The downscaling method uses circulation weather types and regional climate modelling with the COSMO-CLM model. Future projections are computed for two time periods (2021–2060 and 2061–2100) following two scenarios (RCP4.5 and RCP8.5). The CMIP5 ensemble mean response reveals a more likely than not increase of mean annual Eout over Northern and Central Europe and a likely decrease over Southern Europe. There is some uncertainty with respect to the magnitude and the sign of the changes. Higher robustness in future changes is observed for specific seasons. Except from the Mediterranean area, an ensemble mean increase of Eout is simulated for winter and a decreasing for the summer season, resulting in a strong increase of the intra-annual variability for most of Europe. The latter is, in particular, probable during the second half of the 21st century under the RCP8.5 scenario. In general, signals are stronger for 2061–2100 compared to 2021–2060 and for RCP8.5 compared to RCP4.5. Regarding changes of the inter-annual variability of Eout for Central Europe, the future projections strongly vary between individual models and also between future periods and scenarios within single models. This study showed for an ensemble of 22 CMIP5 models that changes in the wind energy potentials over Europe may take place in future decades. However, due to the uncertainties detected in this research, further investigations with multi-model ensembles are needed to provide a better quantification and understanding of the future changes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Atmospheric moisture characteristics associated with the heaviest 1% of daily rainfall events affecting regions of the British Isles are analysed over the period 1997–2008. A blended satellite/rain-gauge data set (GPCP-1DD) and regionally averaged daily rain-gauge observations (HadUKP) are combined with the ERA Interim reanalysis. These are compared with simulations from the HadGEM2-A climate model which applied observed sea surface temperature and realistic radiative forcings. Median extreme daily rainfall across the identified events and locations is larger for GPCP (32 mm day−1) than HadUKP and the simulations (∼25 mm day−1). The heaviest observed and simulated daily rainfall events are associated with increased specific humidity and horizontal transport of moisture (median 850 hPa specific humidity of ∼6 g kg−1 and vapour transport of ∼150 g kg−1 m s−1 for both observed and simulated events). Extreme daily rainfall events are less common during spring and summer across much of the British Isles, but in the south east region, they contribute up to 60% of the total number of distinct extreme daily rainfall events during these months. Compared to winter events, the summer events over south east Britain are associated with a greater magnitude and more southerly location of moisture maxima and less spatially extensive regions of enhanced moisture transport. This contrasting dependence of extreme daily rainfall on moisture characteristics implies a range of driving mechanisms that depend upon location and season. Higher spatial and temporal resolution data are required to explore these processes further, which is vital in assessing future projected changes in rainfall and associated flooding.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lake surface water temperatures (LSWTs) of 246 globally distributed large lakes were derived from Along-Track Scanning Radiometers (ATSR) for the period 1991–2011. The climatological cycles of mean LSWT derived from these data quantify on a global scale the responses of large lakes' surface temperatures to the annual cycle of forcing by solar radiation and the ambient meteorological conditions. LSWT cycles reflect the twice annual peak in net solar radiation for lakes between 1°S to 12°N. For lakes without a lake-mean seasonal ice cover, LSWT extremes exceed air temperatures by 0.5–1.7 °C for maximum and 0.7–1.9 °C for minimum temperature. The summer maximum LSWTs of lakes from 25°S to 35°N show a linear decrease with increasing altitude; −3.76 ± 0.17 °C km−1 (inline image = 0.95), marginally lower than the corresponding air temperature decrease with altitude −4.15 ± 0.24 °C km−1 (inline image = 0.95). Lake altitude of tropical lakes account for 0.78–0.83 (inline image) of the variation in the March to June LSWT–air temperature differences, with differences decreasing by 1.9 °C as the altitude increases from 500 to 1800 m above sea level (a.s.l.) We define an ‘open water phase’ as the length of time the lake-mean LSWT remains above 4 °C. There is a strong global correlation between the start and end of the lake-mean open water phase and the spring and fall 0 °C air temperature transition days, (inline image = 0.74 and 0.80, respectively), allowing for a good estimation of timing and length of the open water phase of lakes without LSWT observations. Lake depth, lake altitude and distance from coast further explain some of the inter-lake variation in the start and end of the open water phase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work is an assessment of frequency of extreme values (EVs) of daily rainfall in the city of Sao Paulo. Brazil, over the period 1933-2005, based on the peaks-over-threshold (POT) and Generalized Pareto Distribution (GPD) approach. Usually. a GPD model is fitted to a sample of POT Values Selected With a constant threshold. However. in this work we use time-dependent thresholds, composed of relatively large p quantities (for example p of 0.97) of daily rainfall amounts computed from all available data. Samples of POT values were extracted with several Values of p. Four different GPD models (GPD-1, GPD-2, GPD-3. and GDP-4) were fitted to each one of these samples by the maximum likelihood (ML) method. The shape parameter was assumed constant for the four models, but time-varying covariates were incorporated into scale parameter of GPD-2. GPD-3, and GPD-4, describing annual cycle in GPD-2. linear trend in GPD-3, and both annual cycle and linear trend in GPD-4. The GPD-1 with constant scale and shape parameters is the simplest model. For identification of the best model among the four models WC used rescaled Akaike Information Criterion (AIC) with second-order bias correction. This criterion isolates GPD-3 as the best model, i.e. the one with positive linear trend in the scale parameter. The slope of this trend is significant compared to the null hypothesis of no trend, for about 98% confidence level. The non-parametric Mann-Kendall test also showed presence of positive trend in the annual frequency of excess over high thresholds. with p-value being virtually zero. Therefore. there is strong evidence that high quantiles of daily rainfall in the city of Sao Paulo have been increasing in magnitude and frequency over time. For example. 0.99 quantiles of daily rainfall amount have increased by about 40 mm between 1933 and 2005. Copyright (C) 2008 Royal Meteorological Society

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The landfall of Cyclone Catarina on the Brazilian coast in March 2004 became known as the first documented hurricane in the South Atlantic Ocean, promoting a new view oil how large-scale features can contribute to tropical transition. The aim of this paper is to put the large-scale circulation associated with Catarina`s transition in climate perspective. This is discussed in the light of a robust pattern of spatial correlations between thermodynamic and dynamic variables of importance for hurricane formation. A discussion on how transition mechanisms respond to the present-day circulation is presented. These associations help in understanding why Catarina was formed in a region previously thought to be hurricane-free. Catarina developed over a large-scale area of thermodynamically favourable air/sea temperature contrast. This aspect explains the paradox that such a rare system developed when the sea surface temperature was slightly below average. But, although thermodynamics played an important role, it is apparent that Catarina would not have formed without the key dynamic interplay triggered by a high latitude blocking. The blocking was associated with an extreme positive phase of the Southern Annular Mode (SAM) both hemispherically and locally, and the nearby area where Catarina developed is found to be more cyclonic during the positive phase of the SAM. A conceptual model is developed and a `South Atlantic index` is introduced as a useful diagnostic of potential conditions leading to tropical transition in the area, where large-scale indices indicate trends towards more favourable atmospheric conditions for tropical cyclone formation. Copyright (c) 2008 Royal Meteorological Society

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The South American Monsoon System (SAMS) is characterised by intense convective activity and precipitation during austral summer. This study investigates changes in the onset, demise and duration of SAMS during 1948-2008. The results show a significant change in these characteristics in the early 1970s. Onset becomes steadily earlier from 1948 to early 1970s and has occurred earlier than 23-27 October after 1972-1973. Demise dates have remained later than 21-25 April after the mid-to-late 1970s. SAMS duration shows a statistical changepoint in the summer of 1971-1972 such that the mean duration was similar to 170 days (1948-1972) and 195 days (1972-1982). Vertically integrated moisture flux is used to diagnose changes in mean state and reveal statistically significant increases over South America after 1971-1972. Copyright. (C) 2010 Royal Meteorological Society

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The South American (SA) rainy season is studied in this paper through the application of a multivariate Empirical Orthogonal Function (EOF) analysis to a SA gridded precipitation analysis and to the components of Lorenz Energy Cycle (LEC) derived from the National Centers for Environmental Prediction (NCEP) reanalysis. The EOF analysis leads to the identification of patterns of the rainy season and the associated mechanisms in terms of their energetics. The first combined EOF represents the northwest-southeast dipole of the precipitation between South and Central America, the South American Monsoon System (SAMS). The second combined EOF represents a synoptic pattern associated with the SACZ (South Atlantic convergence zone) and the third EOF is in spatial quadrature to the second EOF. The phase relationship of the EOFs, as computed from the principal components (PCs), suggests a nonlinear transition from the SACZ to the fully developed SAMS mode by November and between both components describing the SACZ by September-October (the rainy season onset). According to the LEC, the first mode is dominated by the eddy generation term at its maximum, the second by both baroclinic and eddy generation terms and the third by barotropic instability previous to the connection to the second mode by September-October. The predominance of the different LEC components at each phase of the SAMS can be used as an indicator of the onset of the rainy season in terms of physical processes, while the existence of the outstanding spectral peaks in the time dependence of the EOFs at the intraseasonal time scale could be used for monitoring purposes. Copyright (C) 2009 Royal Meteorological Society

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The frequency of extreme rainfall events in Southern Brazil is impacted by Ell Nino - Southern Oscillation (ENSO) episodes, especially in austral spring. There are two areas in which this impact is more significant: one is on the coast, where extreme events are more frequent during El Nino (EN) and the other one extends inland, where extreme events increase during EN and decrease during La Nina (LN). Atmospheric circulation patterns associated with severe rainfall in those areas are similar (opposite) to anomalous patterns characteristic of EN (LN) episodes, indicating why increase (decrease) of extreme events in EN (LN) episodes is favoured. The most recurrent precipitation patterns during extreme rainfall events in each of these areas are disclosed by Principal Component Analysis (PCA) and evidence the separation between extreme events in these areas: a severe precipitation event generally does not occur simultaneously in the coast and inland, although they may Occur inland and in the coastal region in sequence. Although EN predominantly enhances extreme rainfall, there are EN years in which fewer severe events occur than the average of neutral years, and also the enhancement of extreme rainfall is not uniform for different EN episodes, because the interdecadal non-ENSO variability also modulates significantly the frequency of extreme events in Southern Brazil. The inland region, which is more affected, shows increase (decrease) of extreme rainfall in association with the negative (positive) phase of the Atlantic Multidecadal Variability, with the negative (positive) phase of the Pacific Multidecadal Variability and with the positive (negative) phase of the Pacific Interdecadal Variability. Copyright (C) 2008 Royal Meteorological Society

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work is an assessment of frequency of extreme values (EVs) of daily rainfall in the city of São Paulo. Brazil, over the period 1933-2005, based on the peaks-over-threshold (POT) and Generalized Pareto Distribution (GPD) approach. Usually. a GPD model is fitted to a sample of POT Values Selected With a constant threshold. However. in this work we use time-dependent thresholds, composed of relatively large p quantities (for example p of 0.97) of daily rainfall amounts computed from all available data. Samples of POT values were extracted with several Values of p. Four different GPD models (GPD-1, GPD-2, GPD-3. and GDP-4) were fitted to each one of these samples by the maximum likelihood (ML) method. The shape parameter was assumed constant for the four models, but time-varying covariates were incorporated into scale parameter of GPD-2. GPD-3, and GPD-4, describing annual cycle in GPD-2. linear trend in GPD-3, and both annual cycle and linear trend in GPD-4. The GPD-1 with constant scale and shape parameters is the simplest model. For identification of the best model among the four models WC used rescaled Akaike Information Criterion (AIC) with second-order bias correction. This criterion isolates GPD-3 as the best model, i.e. the one with positive linear trend in the scale parameter. The slope of this trend is significant compared to the null hypothesis of no trend, for about 98% confidence level. The non-parametric Mann-Kendall test also showed presence of positive trend in the annual frequency of excess over high thresholds. with p-value being virtually zero. Therefore. there is strong evidence that high quantiles of daily rainfall in the city of São Paulo have been increasing in magnitude and frequency over time. For example. 0.99 quantiles of daily rainfall amount have increased by about 40 mm between 1933 and 2005. Copyright (C) 2008 Royal Meteorological Society

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)