929 resultados para Jamin shearing interferometer


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a self-reference multiplexed fibre interferometer (MFI) by using a tunable laser and fibre Bragg grating (FBG). The optical measurement system multiplexes two Michelson fibre interferometers with shared optical path in the main part of optical system. One fibre optic interferometer is used as a reference interferometer to monitor and control the high accuracy of the measurement system under environmental perturbations. The other is used as a measurement interferometer to obtain information from the target. An active phase tracking homodyne (APTH) technique is applied for signal processing to achieve high resolution. MFI can be utilised for high precision absolute displacement measurement with different combination of wavelengths from the tuneable laser. By means of Wavelength-Division-Multiplexing (WDM) technique, MFI is also capable of realising on-line surface measurement, in which traditional stylus scanning is replaced by spatial light-wave scanning so as to greatly improve the measurement speed and robustness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An optical liquid-level sensor (LLS) based on a long-period fiber grating (LPG) interferometer is proposed and experimentally demonstrated. Two identical 3-dB LPGs are fabricated to form an in-fiber Mach-Zehnder interferometer, and the fiber portion between two LPGs is exposed to the liquid as the sensing element. The sensitivity and measurement range of the sensors employing different orders of cladding modes are investigated both theoretically and experimentally. The experimental results show good linearity and large measurement range. One of the significant advantages of such a sensing structure is that the measurement level is not limited to the length of the LPG itself. Also, the measurement range and sensitivity of the proposed LLS can be readily tailored for a particular applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The turning point of the refractive index (RI) sensitivity based on the multimode microfiber (MMMF) in-line Mach–Zehnder interferometer (MZI) is observed. By tracking the resonant wavelength shift of the MZI generated between the HE11 and HE12 modes in the MMMF, the surrounding RI (SRI) could be detected. Theoretical analysis demonstrates that the RI sensitivity will reach ±∞ on either side of the turning point due to the group effective RI difference (퐺) approaching zero. Significantly, the positive sensitivity exists in a very wide fiber diameter range, while the negative sensitivity can be achieved in a narrow diameter range of only 0.3 μm. Meanwhile, the experimental sensitivities and variation trend at different diameters exhibit high consistency with the theoretical results. High RI sensitivity of 10777.8 nm/RIU (RI unit) at the fiber diameter of 4.6 μm and the RI around 1.3334 is realized. The discovery of the sensitivity turning points has great significance on trace detection due to the possibility of ultrahigh RI sensitivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel approach based on transmissive phase-modulated fiber Bragg grating (FBG) to implement a virtual delay line interferometer (DLI) is proposed, designed, numerically simulated and fabricated. The resulting devices provide the functionality of a Mach-Zehnder interferometer (MZI), or equivalently a Michelson-Morley interferometer (MMI).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe the use of high birefringence fibre forming a differential path interferometer for heterodyne fibre optic sensing applications. We firstly recover a low frequency strain amplitude of 1µe at 1Hz applied to a fibre Bragg grating sensor demonstrating a noise limited resolution of around 100ne/vHz. Secondly we interrogate a Mach-Zehnder interferometer sensor using the dual wavelength technique to detect a change in the Mach-Zehnder OPD of 200µm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An approach to realizing simultaneous measurement of refractive index (RI) and temperature based on a microfiber-based dual inline Mach-Zehnder interferometer (MZI) is proposed and demonstrated. Due to different interference mechanisms, as one interference between the core mode and the lower order cladding mode in the sensing single-mode fiber and the other interference between the fundamental mode and the high-order mode in the multimode microfiber, the former interferometer achieves RI sensitivity of -23.67 nm/RIU and temperature sensitivity of 81.2 pm/oC, whereas those of the latter are 3820.23 nm/RIU, and -465.7 pm/oC, respectively. The large sensitivity differences can provide a more accurate demodulation of RI and temperature. The sensor is featured with multiparameters measurement, compact structure, high sensitivity, low cost, and easy fabrication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A modal interferometer based on multimode-singlemode-multimode fiber structure built with a biconical taper for fiber curvature measurement is proposed and experimentally demonstrated. Due to the tapered singlemode fiber acting as a high-efficient mode power converter to enhance the modes coupling, curvature sensor with improved sensitivity is achieved by monitoring the defined fringe visibility of the interference spectrum. The measuring range can be tuned by changing the waist diameter of the fiber taper. Meanwhile, the sensor shows an intrinsic ability to overcome the influence of temperature cross-sensitivity and the power fluctuation of light source. The advantages of easy fabrication, high-quality spectrum with improved sensitivity, and small hysteresis will provide great potential for practical applications of the sensor. © 2013 Springer-Verlag Berlin Heidelberg.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A photonic crystal fiber (PCF) interferometer that exhibits record fringe contrast (~40 dB) is demonstrated along with its sensing applications. The device operates in reflection mode and consists of a centimeter-long segment of properly selected PCF fusion spliced to single mode optical fibers. Two identical collapsed zones in the PCF combined with its modal properties allow high-visibility interference patterns. The interferometer is suitable for refractometric and liquid level sensing. The measuring refractive index range goes from 1.33 to 1.43 and the maximum resolution is ~1.6 × 10-5. © 2013 by the authors; licensee MDPI, Basel, Switzerland.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a self-reference multiplexed fibre interferometer (MFI) by using a tunable laser and fibre Bragg grating (FBG). The optical measurement system multiplexes two Michelson fibre interferometers with shared optical path in the main part of optical system. One fibre optic interferometer is used as a reference interferometer to monitor and control the high accuracy of the measurement system under environmental perturbations. The other is used as a measurement interferometer to obtain information from the target. An active phase tracking homodyne (APTH) technique is applied for signal processing to achieve high resolution. MFI can be utilised for high precision absolute displacement measurement with different combination of wavelengths from the tuneable laser. By means of Wavelength-Division-Multiplexing (WDM) technique, MFI is also capable of realising on-line surface measurement, in which traditional stylus scanning is replaced by spatial light-wave scanning so as to greatly improve the measurement speed and robustness. © 2004 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An optical in-fiber modal interferometer-based volume strain sensor for earthquake prediction is proposed and experimentally demonstrated. The sensing element is formed by wrapping a multimode-singlemode-multimode fiber structure onto a polyurethane hollow column. Due to the modal interference between the excited guided modes in the fiber, strong interference pattern could be observed in the transmission spectrum. Theoretical analysis verifies that the resonant wavelength shifts as a result of the volume strain variation caused by the column deformation with square root relationship. Sensitivity > 3.93 pm/με within the volume strain ranging from 0 to 1300 με is also experimentally demonstrated. By taking the response of bidirectional change of volume strain and the sluggish character of the employed sensing material into consideration, the sensing system presents good repeatability and stability. © 2001-2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A multimode microfiber (MMMF)-based dual Mach-Zehnder interferometer (MZI) is proposed and demonstrated for simultaneous measurement of refractive index (RI) and temperature. By inserting a section of MMMFsupporting a few modes in the sensing arm of the MZI setup, an inline interference between the fundamental mode and the high-order mode of MMMF, as well as the interference between the high-order mode of MMMF and the reference arm, i.e., the dual MZI, is realized. Due to different interference mechanisms, the former interferometer achieves RI sensitivity of 2576.584 nm/RIU and temperature sensitivity of 0.193 nm/°C, while the latter one achieves RI sensitivity of 1001.864 nm/RIU and temperature sensitivity of 0.239 nm/°C, demonstrating the ability to attain highly accurate multiparameter measurements. © 2014 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose and demonstrate a microfiber Fabry-Perot interferometer (MFPI) fabricated by taper-drawing microfiber at the center of a uniform fiber Bragg grating (FBG). The MFPI employing the two separated sections of FBG as reflectors and a length of microfiber as its cavity is derived. Theoretic study shows that the reflection spectrum of such MFPI is consisted of two parts-interference fringes induced by multi-beam interference and reflection spectrum envelope induced by FBGs. Temperature affects both interference fringes and reflection wavelength of FBGs while ambient refractive index (RI) only influences the interference fringes, i.e., MFPI has different response to temperature and RI. Therefore, MFPI for simultaneous sensing of RI and temperature is experimentally demonstrated by tracking a reflection peak of interference fringes and the Bragg wavelength of the FBGs, which are respectively assisted by frequency domain processing and Gaussian fitting of the optical spectrum. Consequently, wavelength measurement resolution of 0.5 pm is realized. © 1983-2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple fiber sensor capable of simultaneous measurement of liquid level and refractive index (RI) is proposed and experimentally demonstrated. The sensing head is an all-fiber modal interferometer manufactured by splicing an uncoated single-mode fiber with two short sections of multimode fiber. The interference pattern experiences blue shift along with an increase of axial strain and surrounding RI. Owing to the participation of multiple cladding modes with different sensitivities, the height and RI of the liquid could be simultaneously measured by monitoring two dips of the transmission spectrum. Experimental results show that the liquid level and RI sensitivities of the two dips are 245.7 pm/mm, -38 nm/RI unit (RIU), and 223.7 pm/mm, -62 nm/RIU, respectively. The approach has distinctive advantages of easy fabrication, low cost, and high sensitivity for liquid level detection with the capability of distinguishing the RI variation simultaneously. © 2013 Copyright Taylor and Francis Group, LLC.