938 resultados para Isothermal sintering
Resumo:
Analyses of the isothermal and nonisothermal melt kinetics for syndiotactic polystyrene have been performed with differential scanning calorimetry, and several kinetic analyses have been used to describe the crystallization process. The regime II-->III transition, at a crystallization temperature of 239degrees, is found. The values of the nucleation parameter K-g for regimes II and III are estimated. The lateral-surface free energy, sigma = 3.24 erg cm(-2), the fold-surface free energy, sigma(e) = 52.3 +/- 4.2 erg cm(-2), and the average work of chain folding, q = 4.49 +/- 0.38 kcal/mol, are determined with the (040) plane assumed to be the growth plane. The observed crystallization characteristics of syndiotactic polystyrene are compared with those of isotactic polystyrene. The activation energies of isothermal and nonisothermal melt crystallization are determined to be DeltaE = -830.7 kJ/mol and DeltaE = -315.9 kJ/mol, respectively.
Resumo:
The isothermal crystallization kinetics of poly(ethylene oxide) (PEO) block in two poly(ethylene terephthalate) (PET)-PEO segmented copolymers was studied with differential scanning calorimetry. The Avrami equation failed to describe the overall crystallization process, but a modified Avrami equation, the Q equation, did. The crystallizability of the PET block and the different lengths of the PEO block exerted strong influences on the crystallization process, the crystallinity, and time final morphology of the PEO block. The mechanism of nucleation and the growth dimension of the PEG block were different because of the crystallizability of time PET block and the compositional heterogeneity. The crystallization of the PEO block was physically constrained by the microstructure of time PET crystalline phase, which resulted in a lower crystallization rate. However, this influence became weak with the increase in the soft-block length. (C) 2000 John Wiley & Sons, Inc.
Resumo:
The isothermal melt and cold crystallization kinetics of poly(aryl ether ketone ether ketone ketone) are investigated by differential scanning calorimetry over two temperature regions. The Avrami equation describes the primary stage of isothermal crystallization kinetics with the exponent n approximate to 2 for both melt and cold crystallization. With the Hoffman-Weeks method, the equilibrium melting point is estimated to be 406 degrees C. From the spherulitic growth equation proposed by Hoffman and Lauritzen, the nucleation parameter (K-g) of the isothermal melt and cold crystallization is estimated. In addition, the K-g value of the isothermal melt crystallization is compared to those of the other poly(aryl ether ketone)s. (C) 2000 John Wiley & Sons, Inc.
Resumo:
Nanopowders of amorphous silicon nitride were densified and sintered without additives under ultrahigh pressure (1.0-5.0 GPa) between room temperature and 1600 degrees C. The powders had a mean diameter of 18 nm and contained similar to 5.0 wt% oxygen that came from air-exposure oxidation, Sintering results at different temperatures were characterized in terms of sintering density, hardness, phase structure, and grain size. It was observed that the nanopowders can be pressed to a high density (87%) even at room temperature under the high pressure. Bulk Si3N4 amorphous and crystalline ceramics (relative density: 95-98%) were obtained at temperatures slightly below the onset of crystallization (1000-1100 degrees C and above 1420 degrees C, respectively. Rapid grain growth occurred during the crystallization leading to a grain size (>160 nm) almost 1 order of magnitude greater than the starting particulate diameters, With the rise of sintering temperature, a final density was reached between 1350 and 1420 degrees C, which seemed to be independent of the pressure applied (1.0-5.0 GPa), The densification temperature observed under the high pressure is lower by 580 degrees C than that by hot isostatic pressing sintering, suggesting a significantly enhanced low-temperature sintering of the nanopowders under a high external pressure.
Resumo:
Isothermal and nonisothermal crystallization behavior for PEKK(T) was studied using differential scanning calorimetry (DSC), transmission electron microscopy (TEM), and electron diffraction (ED). In the isothermal crystallization process, the Avrami parameters obtained were n = 2.33-2.69, which shows crystal growth of two-dimensional extensions consistent with our observations by TEM. The lamellar thickness increases with the crystallization temperature of PEKK(T) crystallized isothermally from the melt. However, for the nonisothermal crystallization of PEKK(T), the results from the modified Avrami analysis show two different crystallization processes. Avrami exponents n(1) = 3.61-5.30, obtained from the primary crystallization process, are much bigger than are the secondary n(2) = 2.26-3.04 and confirmed by the observation of the spherulite morphology. PEKK(T) crystallized isothermally from the melt possesses the same crystal structure (Form I) as that from nonisothermal melt crystallization. The results from TEM observation show that the spherulite radius decreases with an increasing cooling rate. (C) 2001 John Wiley & Sons, Inc.
Resumo:
The crystallization behavior of PHBV, poly(beta -hydroxybutyrate-co-beta -hydrxyvalerate), with nucleating agents under isothermal conditions was investigated. A differential scanning calorimeter was used to monitor the crystallization process from the melt. During isothermal crystallization, the dependence of relative degree of crystallinity on time was described by the Avrami equation. It has been shown that the addition of BN and Tale causes a considerable increase in the overall crystallization rate of PHBV but does not influence the Avrami exponent n, mechanism of nucleation and spherulite growth mode of PHBV. A little of nucleating agent will increase the crystallization rate and decrease the fold surface free energy sigma (e), remarkably. The effect of BN is more significant than that of Talc.
Resumo:
According to the data obtained from Differential Scanning Calorimetry (DSC),the method of Jeziorny, BOPOXOBCKHH and a new approach proposed by our laboratry are applied to study the nonisothermal crystallization behavior of poly( 3-dodecylthiophene) (P3DDT) and poly(3-octadecylthiophene) (P3ODT),and Kissinger method is used to get the value of the crystallization activation energy. The effect of the different alkyl substitution on crystallization is also investigated. In comparison to the methods of Jeziorny and BOPOXOBCKHH in which it can be found that the deviation from the line occurs in the later stage of crystallization, the new approach appears applicable due to the better linear relation. The values of the crystallization activation energy of P3DDT and P3ODT are estimated as 184.78kJ/mol and 246.93kJ/mol, respectivley, which implies that it is easiser to crystallize P3DDT than P3ODT.
Resumo:
Isothermal and non-isothermal crystallization kinetics of a syndiotactic polypropylene(sPP) sample synthesized by new metallocene catalyst at different annealing temperatures and different cooling rates have been investigated by using differential scanning calorimetry(DSC) and density analysis. The equilibrium melting temperature( T-m(0)) is 158 degrees C by Hoffman-Weeks method. The equilibrium heat of fusion(Delta H-m(0)) is 88J/g in terms of the density analysis and DSC methods. The lateral and end surface free energies derived from the Lauritzen-Hoffman spherulitic growth rate equation are sigma = 5.2erg/cm(2) and sigma(e) = 69erg/cm(2), respectively. The work of chain folding is determined to be q = 33.75kJ/mol. Modified Avrami equation and Ozawa equation can be used to describe the non-isothermal crystallization behavior. And a new and convenient approach by combining the Avrami equation and Ozawa equation in a same crystallinity is used to describe the non-isothermal behavior as well. The crystallization activation energies are evaluated to be 73.7kJ/mol and 73.1kJ/mol for isothermal crystallization and non-isothermal crystallization, respectively. The Avrami exponent n is 1.5 similar to 1.6 for isothermal crystallization procedure, while the Avrami exponent n,is 2.5 similar to 3.5 for non-isothermal crystallization procedure. This indicated the difference of nucleation and growth between the two procedures.
Resumo:
The overall isothermal crystallization kinetics and melting behavior of poly(beta-hydroxybutyrate) (PHB)/poly(vinyl acetate) (PVAc) blends were studied by using differential scanning calorimetry(DSC). The Avrami analysis indicates that the addition of PVAc into PHB results in the decrease in the overall crystallization rate of the PHB phase, but does not affect PHB's nucleation mechanism and geometry of crystal growth. The activation energy of the overall process of crystallization increases with the increasing PVAc content in the blends. The phenomenon of multiple melting endotherms is observed, which is caused by melting and recrystallization during the DSC heating run. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
Isothermal and nonisothermal melt crystallization kinetics of a novel poly(aryl ether ketone), PEDEKK, were investigated by differential scanning calorimetry. Several kinetic analyses were used to describe the crystallization behavior. The activation energies were determined as 425 and 176 KJ/mol for isothermal and nonisothermal crystallization, respectively. The equilibrium melting point T-m(o) was estimated to be 444 degrees C by using the Hoffman-Weeks approach. The observed crystallization characteristics of PEDEKK were compared with those of the other members of the poly(arpl ether ketone) family.
Resumo:
Analysis of the isothermal, and nonisothermal crystallization kinetics of Nylon-11 is carried out using differential scanning calorimetry. The Avrami equation and that modified by Jeziorny can describe the primary stage of isothermal and nonisothermal crystallization of Nylon-11. In the isothermal crystallization process, the mechanism of spherulitic nucleation and growth are discussed; the lateral and folding surface free energies determined from the Lauritzen-Hoffman equation are sigma = 10.68 erg/cm(2) and sigma(e) = 110.62 erg/cm(2); and the work of chain folding q = 7.61 Kcal/mol. In the nonisothermal crystallization process, Ozawa analysis failed to describe the crystallization behavior of Nylon-ii. Combining the Avrami and Ozawa equations, we obtain a new and convenient method to analyze the nonisothermal crystallization kinetics of Nylon-11; in the meantime, the activation energies are determined to be -394.56 and 328.37 KJ/mol in isothermal and nonisothermal crystallization process from the Arrhonius form and the Kissinger method. (C) 1998 John Wiley & Sons, Inc.
Resumo:
Isothermal melt and cold crystallization kinetics of PEEKK have been investigated by differential scanning calorimetry in two temperature regions. During the primary crystallization process, the relative crystallinity develops with a time dependence described by the Avrami equation, with exponent n = 2 for both melt and cold crystallization. The activation energies are -544.5 and 466.7 kJ/mol for crystallization from the melt and amorphous glassy state, respectively. The equilibrium melting point T-m(o) is estimated to be 371 degrees C by using the Hoffman-Weeks approach. The lateral and end surface free energies derived from the Lauritzen-Hoffman spherulitic growth rate equation are sigma=10 erg/cm(2) and sigma(e) = 60 erg/cm(2), respectively. The work of chain folding q is determined as 3.98 kcal/mol. These observed crystallization kinetic characteristics of PEEKK are compared with those of PEEK. (C) 1997 Elsevier Science Ltd.
Resumo:
The overall isothermal crystallization kinetics for neat polypropylene and grafted polypropylene systems were investigated. The rate constants were corrected assuming the heterogeneous nucleation and three dimensional growth of polypropylene spherulites. A semiempirical equation for the radial growth rate of polypropylene spherulites was developed as a function of temperature, and was used to determine the number of effective nuclei of different temperatures. The number of nuclei in grafted samples was estimated to be 10(2)-10(3) times larger than that of neat polypropylene. (C) 1997 John Wiley & Sons, Inc.
Resumo:
Melt mixing of nylon 8 with neodymium oxide particles was carried out with a single-screw extruder. The crystal behaviors of plain nylon 6 and the neodymium oxide filled nylon 6 mixture were studied by means of isothermal crystallization kinetic analysis. Isothermal crystallization thermograms obtained by differential scanning calorimetry (DSC) were analyzed based on the Avrami equation. The neodymium oxide particles acted as a nucleating agent in the mixture. The overall rate of di-isothermal crystallization of the neodymium oxide filled nylon 6 mixture is higher than that of plain nylon 6. The mechanism and modes of plain nylon 6 were the same as those of neodymium oxide filled PA6 mixture.
Resumo:
The isothermal crystallization and melting behavior of the poly(epsilon-caprolactone) (PCL)/poly(ethylene oxide)(PEO) diblock copolymer has been studied by WAXD, SAXS, and DSC methods. Only the PCL block is crystallizable; the PEO block of weight fraction 20% cannot crystallize, although its corresponding homopolymer has strong crystallizability. The long period, amorphous layer, and crystalline lamella of the PCL/PEO block copolymer all increase with the rise in the crystallization temperature, and the thickness of the amorphous layer is much larger than that of crystalline lamella due to the existence of the PEO block in the amorphous region. The isothermal crystallization of the PCL/PEO block copolymer is investigated by using the theory of Turnbull and Fischer. It is found that the amorphous PEO block has a great influence on the nucleation of PCL block crystallization, and the extent of this influence depends on crystallization conditions, especially temperature. The outstanding characteristics are the phenomenon of the double melting peaks in the melting process of the PCL/PEO block copolymer after isothermal crystallization at different temperatures and the transformation of melting peaks from double peaks to a single peak with variations in the crystallization condition. They are related mainly to the existence of the PEO block bonding chemically with the PCL block. In summing up results of investigations into the crystallization and melting behavior of the PCL/PEO block copolymer, it is interesting to notice that when the PCL/PEO block copolymer crystallizes at three different crystallization temperatures, i.e., below 0 degrees C, between 0 and 35 degrees C, and above 35 degrees C, the variation of peak melting temperature is similar to that of overall crystallization rates in the process of isothermal crystallization. The results can be elucidated by the effect of the PEO block on the crystallization of the PCL block, especially its nucleation. (C) 1996 John Wiley & Sons, Inc.