893 resultados para Isopropyl Phenyl Ether
Resumo:
The new triazene-porphyrin dye 5-(1-(4-phenyl)-3-(4-nitrophenyl)triazene)-10,15,20-triphenylporphyrin, encompassing a reactive protonated triazene moiety, was prepared starting from meso-tetraphenylporphyrin (H2TPP), first converting it to the 5-(4-nitrophenyl)-10,15,20-triphenylporphyrin, then reducing to the 5-(4-aminophenyl)-10,15,20-tri(phenyl) porphyrin intermediate, and reacting with the diazonium salt of 4-nitroaniline; and characterized by spectroscopic and electrochemical methods. The absorption spectrum of the neutral species resembled the sum of H2TPP and of 1,3-bis(4-nitrophenyl) triazene spectrum, but the deprotonated anionic species showed more delocalized frontier orbitals, behaving as a push-pull system exhibiting triazenide-to-porphyrin charge-transfer transitions.
Resumo:
Triblock copolymers are made of monomer segments, being the central part usually hydrophobic and the outer parts hydrophilic. By varying sizes, molecular weights and monomer types of the segments one obtains different final molecules, with different physico-chemical properties, which are directly related to the performance of the final product. Looking for new products to be used, among other possibilities, in biological applications, a new polymer (Figure 1) was synthesized by the Dow Chemical and studied by Size Exclusion Chromatography, Fourier Transformed Infrared Spectrometry, Small-angle X-ray Scattering (SAXS) and its cloud point was determined by measuring light transmittance. The studies showed low molecular polydispersivety, but different polarities in the macromolecules fractions. Due to the low solubility of Diol in water, a mixture of water/butyl diglycol was used as solvent. An extensive analysis by SAXS was performed for concentrations from 50 wt% to 80 wt% of Diol in solution. Small concentrations showed very low signal to noise ratio, making it impossible to be analysed. The scattering intensity including the form factor of polydisperse non-homogeneous spheres, and the structure factor of interacting hard spheres was fitted to the curves. As the polymer concentration is high, the fitting of form factors of direct and reverse micelles were compared. The results for direct micelles were better up to 80 wt%, whereas at 90 wt% and 95 wt% the curves were better fitted by reverse micelles. It might seem odd that direct micelles are present up to such high concentrations, but it might have been caused by the presence of butyl diglycol, which increases the solubility of Diol in water. The inner and outer radius of the micelles, electron density distribution, and interaction radius of the micelles were obtained. The polydispersivety increases with Diol concentration. Besides, the interaction radius increases with solvent concentration, even when reversed micelles are present. In the last case, accompanied by an increase of inner radius (water content), as there are fewer Diol molecules to involve the water nuclei, which become larger, further apart, and in less number.
Resumo:
C2-Symmetrical, enantiopure 2,6-di[1-(1-aziridinyl)alkyl]pyridines (DIAZAPs) were prepared by a high-yielding, three-step sequence starting from 2,6-pyridinedicarbaldehyde and (S)-valinol or (S)-phenylglycinol. The new compounds were tested as ligands in palladium-catalyzed allylation of carbanions in different solvents. Almost quantitative yield and up to 99% enantiomeric excess were obtained in the reactions of the enolates derived from malonate, phenyl- and benzylmalonate dimethyl esters with 1,3-diphenyl-2-propenyl ethyl carbonate. Asymmetric synthesis of 2-(2-pyridyl)aziridines from chiral 2-pyridineimines bearing a stereogenic center at the nitrogen atom was development. The envisioned route involves the addition of chloromethyllithium to the imine derived from 2-pyridinealdehyde and (S)-valinol, protected as O-trimethylsilyl ether. The analogous reaction performed on the imine derived from (S)-valine methyl ester gave the product containing the aziridine ring as well as the α-chloro ketone group coming from the attack of chloromethyllithium to the ester function. Other stereogenic alkyl substituents at nitrogen gave less satisfactory results. Moreover, the aziridination protocol did not work on other aromatic imines, e.g. 3-pyridineimine and benzaldimine, which are not capable of bidentate chelation. The N-substituent could not be removed, but aziridine underwent ring-opening by attack of nitrogen, sulfur, and oxygen nucleophiles. Complete or prevalent regioselectivity was obtained using cerium trichloride heptahydrate as a catalyst. In some cases, the N-substituent could be removed by an oxidative protocol. The addition of organometallic (lithium, magnesium, zinc) reagents to 2-pyrroleimines derived from (S)-valinol and (S)-phenylglycinol gave the N-substituted-1-(2-pyrrolyl)alkylamines with high yields and diastereoselectivities. The (S,S)-diastereomers were useful intermediates for the preparation of enantiopure 1-[1-(2-pyrrolyl)alkyl]aziridines by routine cyclization of the β-aminoalcohol moiety and of (S)-N-benzoyl 1-[1-(2-pyrrolyl)alkyl]amines and their N-substituted derivatives by oxidative cleavage of the chiral auxiliary. 1-Allyl-2-pyrroleimines obtained from (S)-phenylglycinol and (S)-valinol underwent highly diastereoselective addition of allylmetal reagents, used in excess amounts, to give the corresponding secondary amines with concomitant allyl to 1-propenyl isomerisation of the 1-pyrrole substituent. Protection of the 2-aminoalcohol moiety as oxazolidinone, amide or Boc derivate followed by ring closing metathesis of the alkene groups gave the unsaturated bicyclic compound, whose hydrogenation afforded the indolizidine derivative as a mixture of separable diastereomers. The absolute configuration of the main diastereomer was assessed by X-ray crystallographic analysis.
Resumo:
In the modern society, light is mostly powered by electricity which lead to a significant increase of the global energy consumption. In order to reduce it, different kinds of electric lamps have been developed over the years; it is now accepted that phosphorescence-based OLEDs offer many advantages over existing light technologies. Iridium complexes are considered excellent candidates for bright materials by virtue of the possibility to easily tune the wavelength of the emitted radiation, by appropriate modifications of the nature of the ligands. It is important to note that the synthesis of Ir(III) blue-emitting complexes is a very challenging goal, because of wide HOMO-LUMO gaps needed for produce a deep blue emission. During my thesis I planned the synthesis of two different series of new Ir(III) heteroleptic complexes, the C and the N series, using cyclometalating ligands containing an increasing number of nitrogens in inverse and regular position. I successfully performed in the synthesis of the required four ligands, i.e. 1-methyl-4-phenyl-1H-imidazole (2), 4-phenyl-1-methyl-1,2,3-triazole (3), 1-phenyl-1H-1,2,3-triazole (6) and 1-phenyl-1H-tetrazole (7), that differ in the number of nitrogens present in the heterocyclic ring and in the position of the phenyl ring. Therefore the cyclometalation of the obtained ligands to get the corresponding Ir(III)-complexes was attempted. I succeeded in the synthesis of two Ir(III)-complexes of the C series, and I carried out various attempts to set up the appropriate reaction conditions to get the remaining desired derivatives. The work is still in progress, and once all the desired complexes will be synthesized and characterized, a correlation between their structure and their emitting properties could be formulated analysing and comparing the photophysical data of the real compounds.
Resumo:
Because of the poor solubility of the commercially available bisacylphosphine oxides in dental acidic aqueous primer formulations, bis(3-{[2-(allyloxy)ethoxy]methyl}-2,4,6-trimethylbenzoyl)(phenyl)phosphine oxide (WBAPO) was synthesized starting from 3-(chloromethyl)-2,4,6-trimethylbenzoic acid by the dichlorophosphine route. The substituent was introduced by etherification with 2-(allyloxy)ethanol. In the second step, 3-{[2-(allyloxy)ethoxy]methyl}-2,4,6-trimethylbenzoic acid was chlorinated. The formed acid chloride showed an unexpected low thermal stability. Its thermal rearrangement at 180 ° C resulted in a fast formation of 3-(chloromethyl)-2,4,6-trimethylbenzoic acid 2-(allyloxy)ethyl ester. In the third step, the acid chloride was reacted with phenylphosphine dilithium with the formation of bis(3-{[2-(allyloxy)ethoxy]methyl}-2,4,6-trimethylbenzoyl)(phenyl)phosphine, which was oxidized to WBAPO. The structure of WBAPO was confirmed by ¹H NMR, ¹³C NMR, ³¹P NMR, and IR spectroscopy, as well as elemental analysis. WBAPO, a yellow liquid, possesses improved solubility in polar solvents and shows UV-vis absorption, and a high photoreactivity comparable with the commercially available bisacylphosphine oxides. A sufficient storage stability was found in dental acidic aqueous primer formulations.
Resumo:
Antioxidant treatment has previously been shown to be neuroprotective in experimental bacterial meningitis. To obtain quantitative evidence for oxidative stress in this disease, we measured the major brain antioxidants ascorbate and reduced glutathione, and the lipid peroxidation endproduct malondialdehyde in the cortex of infant rats infected with Streptococcus pneumoniae. Cortical levels of the two antioxidants were markedly decreased 22 h after infection, when animals were severely ill. Total pyridine nucleotide levels in the cortex were unaltered, suggesting that the loss of the two antioxidants was not due to cell necrosis. Bacterial meningitis was accompanied by a moderate, significant increase in cortical malondialdehyde. While treatment with either of the antioxidants alpha-phenyl-tert-butyl nitrone or N-acetylcysteine significantly inhibited this increase, only the former attenuated the loss of endogenous antioxidants. Cerebrospinal fluid bacterial titer, nitrite and nitrate levels, and myeloperoxidase activity at 18 h after infection were unaffected by antioxidant treatment, suggesting that they acted by mechanisms other than modulation of inflammation. The results demonstrate that bacterial meningitis is accompanied by oxidative stress in the brain parenchyma. Furthermore, increased cortical lipid peroxidation does not appear to be the result of parenchymal oxidative stress, because it was prevented by NAC, which had no effect on the loss of brain antioxidants.
Resumo:
The effect of adjuvant therapy with the radical scavenger alpha-phenyl-tert-butyl nitrone (PBN; 100 mg/kg given intraperitoneally every 8 h for 5 days) on brain injury and learning function was evaluated in an infant rat model of pneumococcal meningitis. Meningitis led to cortical necrotic injury (median, 3.97% [range, 0%-38.9%] of the cortex), which was reduced to a median of 0% (range, 0%-30.9%) of the cortex (P<.001) by PBN. However, neuronal apoptosis in the hippocampal dentate gyrus was increased by PBN, compared with that by saline (median score, 1.15 [range, 0.04-1.73] vs. 0.31 [range, 0-0.92]; P<.001). Learning function 3 weeks after cured infection, as assessed by the Morris water maze, was decreased, compared with that in uninfected control animals (P<.001). Parallel to the increase in hippocampal apoptosis, PBN further impaired learning in infected animals, compared with that in saline-treated animals (P<.02). These results contrast with those of an earlier study, in which PBN reduced cortical and hippocampal neuronal injury in group B streptococcal meningitis. Thus, in pneumococcal meningitis, antioxidant therapy with PBN aggravates hippocampal injury and learning deficits.
Resumo:
Thermo-responsive materials have been of interest for many years, and have been studied mostly as thermally stimulated drug delivery vehicles. Recently acrylate and methacrylates with pendant ethylene glycol methyl ethers been studied as thermo responsive materials. This work explores thermo response properties of hybrid nanoparticles of one of these methacrylates (DEGMA) and a block copolymer with one of the acrylates (OEGA), with gold nanoparticle cores of different sizes. We were interested in the effects of gold core size, number and type of end groups that anchored the chains to the gold cores, and location of bonding sites on the thermo-response of the polymer. To control the number and location of anchoring groups we using a type of controlled radical polymerization called Reversible Addition Fragmentation Transfer (RAFT) Polymerization. Smaller gold cores did not show the thermo responsive behavior of the polymer but the gold cores did seem to self-assemble. Polymer anchored to larger gold cores did show thermo responsivity. The anchoring end group did not alter the thermoresponsivity but thiol-modified polymers stabilized gold cores less well than chains anchored by dithioester groups, allowing gold cores to grow larger. Use of multiple bonding groups stabilized the gold core. Using block copolymers we tested the effects of number of thiol groups and the distance between them. We observed that the use of multiple anchoring groups on the block copolymer with a sufficiently large gold core did not prevent thermo responsive behavior of the polymer to be detected which allows a new type of thermo-responsive hybrid nanoparticle to be used and studied for new applications.
Resumo:
The Pd-C-assisted hydrogenolysis of substituted 3-(2-nitrophenyl)-isoxazoles, irrespective of substitution on the isoxa-zole ring, invariably leads to reduction of nitro to amino group with concomitant regiospecific ring closure to yield substituted 4-quinolinamines. In contrast similar hydrogenation of 3-(nitro substituted phenyl)-2-isoxazolines results in reduction of the nitro group only with conservation of isoxazoline ring to yield 3-(amino substituted phenyl)-2-isoxazolines.
Resumo:
The human immunodeficiency virus-1 reverse transcriptase inhibitory activity of 2-(2,6-disubstituted phenyl)-3-(substituted pyrimidin-2-yl)-thiazolidin-4-ones have been analyzed using combinatorial protocol in multiple linear regression (CP-MLR) with several electronic and molecular surface area features of the compounds obtained from Molecular Operating Environment (MOE) software. The study has indicated the role of different charged molecular surface areas in modeling the inhibitory activity of the compounds. The derived models collectively suggested that the compounds should be compact without bulky substitutions on its peripheries for better HIV-1 RT inhibitory activity. It also emphasized the necessity of hydrophobicity and compact structural features for their activity. The scope of the descriptors identified for these analogues have been verified by extending the dataset with different 2-(disubstituted phenyl)-3-(substituted pyridin-2-yl)-thiazolidin-4-ones. The joint analysis of extended dataset highlighted the information content of identified descriptors in modeling the HIV-1 RT inhibitory activity of the compounds.
Resumo:
Acetylation and formylation of 3-phenyl-cycl[3.2.2]azine derivatives, in the presence of Lewis acids, have been Investigated. It has been found that the orientation of substitution in 2-carbomethoxy- 3-phenyl-cycl[3.2.2]azine for these two reactions, under Identical conditions, is different.
Resumo:
We prepared and investigated oligonucleotide duplexes of the sequence d(GATGAC(X)(n)GCTAG)d(CTAGC(Y)(n)GTCATC), in which X and Y designate biphenyl- (bph) and pentafluorobiphenyl- ((5F)bph) C-nucleotides, respectively, and n varies from 0-4. These hydrophobic base substitutes are expected to adopt a zipperlike, interstrand stacking motif, in which not only bph/bph or (5F)bph/(5F)bph homo pairs, but also (5F)bph/bph mixed pairs can be formed. By performing UV-melting curve analysis we found that incorporation of a single (5F)bph/(5F)bph pair leads to a duplex that is essentially as stable as the unmodified duplex (n=0), and 2.4 K more stable than the duplex with the nonfluorinated bph/bph pair. The T(m) of the mixed bph/(5F)bph pair was in between the T(m) values of the respective homo pairs. Additional, unnatural aromatic pairs increased the T(m) by +3.0-4.4 K/couple, irrespective of the nature of the aromatic residue. A thermodynamic analysis using isothermal titration calorimetry (ITC) of a series of duplexes with n=3 revealed lower (less negative) duplex formation enthalpies (DeltaH) in the (5F)bph/(5F)bph case than in the bph/bph case, and confirmed the higher thermodynamic stability (DeltaG) of the fluorinated duplex, suggesting it to be of entropic origin. Our data are compatible with a model in which the stacking of (5F)bph versus bph is dominated by dehydration of the aromatic units upon duplex formation. They do not support a model in which van der Waals dispersive forces (induced dipoles) or electrostatic (quadrupole) interactions play a dominant role