996 resultados para Isolated solution
Resumo:
The galvanic replacement of isolated electrodeposited semiconducting CuTCNQ microstructures on a glassy carbon (GC) substrate with gold is investigated. It is found that anisotropic metal nanoparticles are formed which are not solely confined to the redox active sites on the semiconducting materials but are also observed on the GC substrate which occurs via a lateral charge propagation mechanism. We also demonstrate that this galvanic replacement approach can be used for the formation of isolated AgTCNQ/Au microwire composites which occurs via an analogous mechanism. The resultant MTCNQ/Au (M = Cu, Ag) composite materials are characterized by Raman, spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and investigated for their catalytic properties for the reduction of ferricyanide ions with thiosulphate ions in aqueous solution. Significantly it is demonstrated that gold loading, nanoparticle shape and in particular the MTCNQ–Au interface are important factors that influence the reaction rate. It is shown that there is a synergistic effect at the CuTCNQ/Au composite when compared to AgTCNQ/Au at similar gold loadings.
Resumo:
The application of layered double hydroxides (LDHs) and thermally activated LDHs for the removal of various fluorine (F-, BF-4), chlorine (Cl-,ClO-4), bromine (Br-, BrO-3) and iodine (I-, IO-3) species from aqueous solutions has been reviewed in this article. LDHs and thermally activated LDHs were able to significantly reduce the concentration of selected anions in laboratory scale experiments. The M2+:M3+ cation ratio of the LDH adsorbent was an important factor which influenced anion uptake. Though LDHs were able to remove some target anion species through anion exchange and surface adsorption thermal activation and reformation generally produced better results. The presence of competing anions including carbonate, phosphate and sulphate had a significant impact on uptake of the target anion as LDHs typically exhibit lower affinity towards monovalent anions compared to anions with multiple charges. The removal of fluoride and perchlorate from aqueous solution by a continuous flow system utilising fixed bed columns packed with LDH adsorbents has also been investigated. The adsorption capacity of the columns at breakpoint was heavily dependent on the flow rate and lower than result reported for the corresponding batch methods. There is still considerable scope for future research on numerous topics summarised in this article.
Resumo:
Australia is a high-potential country for geothermal power with reserves currently estimated in the tens of millions of petajoules, enough to power the nation for at least 1000 years at current usage. However, these resources are mainly located in isolated arid regions where water is scarce. Therefore, wet cooling systems for geothermal plants in Australia are the least attractive solution and thus air-cooled heat exchangers are preferred. In order to increase the efficiency of such heat exchangers, metal foams have been used. One issue raised by this solution is the fouling caused by dust deposition. In this case, the heat transfer characteristics of the metal foam heat exchanger can dramatically deteriorate. Exploring the particle deposition property in the metal foam exchanger becomes crucial. This paper is a numerical investigation aimed to address this issue. Two dimensional (2D) numerical simulations of a standard one-row tube bundle wrapped with metal foam in cross-flow are performed and highlight preferential particle deposition areas.
Resumo:
We describe a novel and facile approach to covalently graft molecules containing stable free radicals onto carbon surfaces including graphene, carbon nanotubes, glassy carbon and carbon fibres. The new technique employs a stable aryl nitroxide radical diazonium tetrafluoroborate salt. The salt may be isolated and added to carbon surfaces in solution, suspension or electrochemically and represents a convenient, versatile and highly efficient means to adorn graphitic materials with large numbers of free radical spin systems
Resumo:
Australia is a high potential country for geothermal power with reserves currently estimated in the tens of millions of petajoules, enough to power the nation for at least 1000 years at current usage.However, these resources are mainly located in isolated arid regions where water is scarce. Therefore, wet cooling systems for geothermal plants in Australia are the least attractive solution and thus air-cooled heat exchangers are preferred. In order to increase the efficiency of such heat exchangers, metal foams have been used. One issue raised by this solution is the fouling caused by dust deposition. In this case, the heat transfer characteristics of the metal foam heat exchanger can dramatically deteriorate. Exploring the particle deposition property in the metal foam exchanger becomes crucial. This paper is a numerical investigation aimed to address this issue. Two-dimensional(2D numerical simulations of a standard one-row tube bundle wrapped with metal foam in cross-flow are performed and highlight preferential particle deposition areas.
Resumo:
Background Mycobacterium abscessus is a rapidly growing mycobacterium responsible for progressive pulmonary disease, soft tissue and wound infections. The incidence of disease due to M. abscessus has been increasing in Queensland. In a study of Brisbane drinking water, M. abscessus was isolated from ten different locations. The aim of this study was to compare genotypically the M. abscessus isolates obtained from water to those obtained from human clinical specimens. Methods Between 2007 and 2009, eleven isolates confirmed as M. abscessus were recovered from potable water, one strain was isolated from a rainwater tank and another from a swimming pool and two from domestic taps. Seventy-four clinical isolates referred during the same time period were available for comparison using rep-PCR strain typing (Diversilab). Results The drinking water isolates formed two clusters with ≥97% genetic similarity (Water patterns 1 and 2). The tankwater isolate (WP4), one municipal water isolate (WP3) and the pool isolate (WP5) were distinctly different. Patient isolates formed clusters with all of the water isolates except for WP3. Further patient isolates were unrelated to the water isolates. Conclusion The high degree of similarity between strains of M. abscessus from potable water and strains causing infection in humans from the same geographical area, strengthens the possibility that drinking water may be the source of infection in these patients.
Resumo:
Ever since sodium fluorescein (‘fluorescein’ [FL]) was first used to investigate the ocular surface over a century ago, the term ‘staining’ has been taken to mean the presence of ocular surface fluorescence [1]. This term has not been necessarily taken to infer any particular mechanism of causation, and indeed, can be attributed to a variety of possible aetiologies [2]. In recent times, there has been considerable interest in a form of ocular surface fluorescence seen in association with the use of certain combinations of soft contact lenses and multipurpose solutions. The first clinical account of this phenomenon was reported by Jones et al. [3], which was followed by a more formal investigation by the same author in 2002 [4]. Jones et al described this appearance as a ‘classic solution-based toxicity reaction’. Subsequently, this appearance has come to be known as ‘solution-induced corneal staining’ or more recently by the acronym ‘SICS’ [5]. The term SICS is potentially problematic in that from a cell biology point of view, there is an inference that ‘staining’ means the entry of a dye into corneal epithelial cells. Morgan and Maldonado-Codina [2] noted there was no foundation of solid scientific literature underpinning our understanding of the true basic causative mechanisms of this phenomenon; since that time, further work has been published in this field [6] and [7] but questions still remain about the precise aetiology of this phenomenon...
Resumo:
The numerical solution in one space dimension of advection--reaction--diffusion systems with nonlinear source terms may invoke a high computational cost when the presently available methods are used. Numerous examples of finite volume schemes with high order spatial discretisations together with various techniques for the approximation of the advection term can be found in the literature. Almost all such techniques result in a nonlinear system of equations as a consequence of the finite volume discretisation especially when there are nonlinear source terms in the associated partial differential equation models. This work introduces a new technique that avoids having such nonlinear systems of equations generated by the spatial discretisation process when nonlinear source terms in the model equations can be expanded in positive powers of the dependent function of interest. The basis of this method is a new linearisation technique for the temporal integration of the nonlinear source terms as a supplementation of a more typical finite volume method. The resulting linear system of equations is shown to be both accurate and significantly faster than methods that necessitate the use of solvers for nonlinear system of equations.
Resumo:
Gas phase peroxyl radicals are central to our chemical understanding of combustion and atmospheric processes and are typically characterized by strong absorption in the UV (lambda(max) approximate to 240 nm). The analogous maximum absorption feature for arylperoxyl radicals is predicted to shift to the visible but has not previously been characterized nor have any photoproducts arising from this transition been identified. Here we describe the controlled synthesis and isolation in vacuo of an array of charge-substituted phenylperoxyl radicals at room temperature, including the 4-(N,N,N-trimethylammonium)methyl phenylperoxyl radical cation (4-Me3N[+]CH2-C6H4OO center dot), using linear ion-trap mass spectrometry. Photodissociation mass spectra obtained at wavelengths ranging from 310 to 500 nm reveal two major photoproduct channels corresponding to homolysis of aryl-OO and arylO-O bonds resulting in loss of O-2 and O, respectively. Combining the photodissociation yields across this spectral window produces a broad (FWHM approximate to 60 nm) but clearly resolved feature centered at lambda(max) = 403 nm (3.08 eV). The influence of the charge-tag identity and its proximity to the radical site are investigated and demonstrate no effect on the identity of the two dominant photoproduct channels. Electronic structure calculations have located the vertical (B) over tilde <- (X) over tilde transition of these substituted phenylperoxyl radicals within the experimental uncertainty and further predict the analogous transition for unsubstituted phenylperoxyl radical (C6H5OO center dot) to be 457 nm (2.71 eV), nearly 45 nm shorter than previous estimates and in good agreement with recent computational values.
Resumo:
Na-dodecylbenzenesulfate (SDBS), a natural anionic surfactant, has been successfully intercalated into a Ca based LDH host structure during tricalcium aluminate hydration in the presence of SDBS aqueous solution (CaAl-SDBS-LDH). The resulting product was characterized by powder X-ray diffraction (XRD), mid-infrared (MIR) spectroscopy combined with near-infrared (NIR) spectroscopy technique, thermal analysis (TG–DTA) and scan electron microscopy (SEM). The XRD results revealed that the interlayer distance of resultant product was expanded to 30.46 Å. MIR combined with NIR spectra offered an effective method to illustrate this intercalation. The NIR spectra (6000–5500 cm−1) displayed prominent bands to expound SDBS intercalated into hydration product of C3A. And the bands around 8300 cm−1 were assigned to the second overtone of the first fundamental of CH stretching vibrations of SDBS. In addition, thermal analysis showed that the dehydration and dehydroxylation took place at ca. 220 °C and 348 °C, respectively. The SEM results appeared approximately hexagonal platy crystallites morphology for CaAl-SDBS-LDH, with particle size smaller and thinner.
Resumo:
Zero valent iron (ZVI) was prepared by reducing natural goethite (NG-ZVI) and synthetic goethite (SG-ZVI) in hydrogen at 550 °C. XRD, TEM, FESEM/EDS and specific surface area (SSA) and pore analyser were used to characterize goethites and reduced goethites. Both NG-ZVI and SG-ZVI with a size of nanoscale to several hundreds of nanometers were obtained by reducing goethites at 550 °C. The reductive capacity of the ZVIs was assessed by removal of Cr(VI) at ambient temperature in comparison with that of commercial iron powder (CIP). The effect of contact time, initial concentration and reaction temperature on Cr(VI) removal was investigated. Furthermore, the uptake mechanism was discussed according to isotherms, thermodynamic analysis and the results of XPS. The results showed that SG-ZVI had the best reductive capacity to Cr(VI) and reduced Cr(VI) to Cr(III). The results suggest that hydrogen reduction is a good approach to prepare ZVI and this type of ZVI is potentially useful in remediating heavy metals as a material of permeable reaction barrier.
Resumo:
alpha-Carboxylate radical anions are potential reactive intermediates in the free radical oxidation of biological molecules (e. g., fatty acids, peptides and proteins). We have synthesised well-defined alpha-carboxylate radical anions in the gas phase by UV laser photolysis of halogenated precursors in an ion-trap mass spectrometer. Reactions of isolated acetate ((center dot)CH(2)CO(2)) and 1-carboxylatobutyl (CH(3)CH(2)CH(2)(center dot)CHCO(2)(-)) radical anions with dioxygen yield carbonate (CO(3)(center dot-)) radical anions and this chemistry is shown to be a hallmark of oxidation in simple and alkyl-substituted cross-conjugated species. Previous solution phase studies have shown that C(alpha)-radicals in peptides, formed from free radical damage, combine with dioxygen to form peroxyl radicals that subsequently decompose into imine and keto acid products. Here, we demonstrate that a novel alternative pathway exists for two alpha-carboxylate C(alpha)-radical anions: the acetylglycinate radical anion (CH(3)C(O)NH(center dot)CHCO(2)(-)) and the model peptide radical anion, YGGFG(center dot-). Reaction of these radical anions with dioxygen results in concerted loss of carbon dioxide and hydroxyl radical. The reaction of the acetylglycinate radical anion with dioxygen reveals a two-stage process involving a slow, followed by a fast kinetic regime. Computational modelling suggests the reversible formation of the C(alpha) peroxyl radical facilitates proton transfer from the amide to the carboxylate group, a process reminiscent of, but distinctive from, classical proton-transfer catalysis. Interestingly, inclusion of this isomerization step in the RRKM/ME modelling of a G3SX level potential energy surface enables recapitulation of the experimentally observed two-stage kinetics.
Resumo:
PURPOSE. To examine the deposition of tear phospholipids and cholesterol onto worn contact lenses and the effect of lens material and lens care solution. METHODS. Lipids were extracted from tears and worn contact lenses using 2:1 chloroform: Methanol and the extract washed with aqueous ammonium acetate, before analysis by electrospray ionization tandem mass spectrometry (ESI-MS/MS). RESULTS. Twenty-three molecular lipids from the sphingomyelin (SM) and phosphatidylcholine (PC) classes were detected in tears, with total concentrations of each class determined to be 5 ± 1 pmol/μL (~3.8 μg/mL) and 6 ± 1 pmol/μL (~ 4.6μg/mL), respectively. The profile of individual phospholipids in both of these classes was shown to be similar in contact lens deposits. Deposition of representative polar and nonpolar lipids were shown to be significantly higher on senofilcon A contact lenses, with ~59 ng/lens SM, 195 ng/lens PC, and 9.9 μg/lens cholesterol detected, whereas balafilcon A lens extracts contained ~19 ng/lens SM, 19 ng/lens PC, and 3.9 μg/lens cholesterol. Extracts from lenses disinfected and cleaned with two lens care solutions showed no significant differences in total PC and SM concentrations; however, a greater proportion of PC than SM was observed, compared with that in tears. CONCLUSIONS. Phospholipid deposits extracted from worn contact lenses show a molecular profile similar to that in tears. The concentration of representative polar and nonpolar lipids deposited onto contact lenses is significantly affected by lens composition. There is a differential efficacy in the removal of PC and SM with lens care solutions.
Resumo:
We have used a tandem pair of supersonic nozzles to produce clean samples of CH3OO radicals in cryogenic matrices. One hyperthermal nozzle decomposes azomethane (CH3NNCH3) to generate intense pulses of CH3 radicals, While the second nozzle alternately fires a burst Of O-2/Ar at the 20 K matrix. The CH3/O-2/20 K argon radical sandwich acts to produce target methylperoxyl radicals: CH3 + O-2 --> CH3OO. The absorption spectra of the radicals are monitored with a Fourier transform infrared spectrometer. We report 10 of the 12 fundamental infrared bands of the methylperoxyl radical CH3OO, (X) over tilde (2)A", in an argon matrix at 20 K. The experimental frequencies (cm(-1)) and polarizations follow: the a' modes are 3032, 2957, 1448, 1410, 1180, 1109, 90, 492, while the a" modes are 3024 and 1434. We cannot detect the asymmetric CH3 rocking mode, nu(11), nor the torsion, nu(12). The infrared spectra of (CH3OO)-O-18-O-18, (CH3OO)-C-13, and CD3OO have been measured as well in order to determine the isotopic shifts. The experimental frequencies, {nu}, for the methylperoxyl radicals are compared to harmonic frequencies, {omega}, resulting from a UB3LYP/6-311G(d,p) electronic structure calculation. Linear dichroism spectra were measured with photooriented radical samples in order to establish the experimental polarizations of most vibrational bands. The methylperoxyl radical matrix frequencies listed above are within +/-2% of the gas-phase vibrational frequencies. A final set of vibrational frequencies for the H radical, are recommended. See also http://ellison.colorado.edu/methylperoxyl.
Resumo:
Recent advances in computer vision and machine learning suggest that a wide range of problems can be addressed more appropriately by considering non-Euclidean geometry. In this paper we explore sparse dictionary learning over the space of linear subspaces, which form Riemannian structures known as Grassmann manifolds. To this end, we propose to embed Grassmann manifolds into the space of symmetric matrices by an isometric mapping, which enables us to devise a closed-form solution for updating a Grassmann dictionary, atom by atom. Furthermore, to handle non-linearity in data, we propose a kernelised version of the dictionary learning algorithm. Experiments on several classification tasks (face recognition, action recognition, dynamic texture classification) show that the proposed approach achieves considerable improvements in discrimination accuracy, in comparison to state-of-the-art methods such as kernelised Affine Hull Method and graph-embedding Grassmann discriminant analysis.