867 resultados para Intrusion Detection System (IDS)
Resumo:
This paper describes a stress detection system based on fuzzy logic and two physiological signals: Galvanic Skin Response and Heart Rate. Instead of providing a global stress classification, this approach creates an individual stress templates, gathering the behaviour of individuals under situations with different degrees of stress. The proposed method is able to detect stress properly with a rate of 99.5%, being evaluated with a database of 80 individuals. This result improves former approaches in the literature and well-known machine learning techniques like SVM, k-NN, GMM and Linear Discriminant Analysis. Finally, the proposed method is highly suitable for real-time applications
Resumo:
This paper proposes a stress detection system based on fuzzy logic and the physiological signals heart rate and galvanic skin response. The main contribution of this method relies on the creation of a stress template, collecting the behaviour of previous signals under situations with a different level of stress in each individual. The creation of this template provides an accuracy of 99.5% in stress detection, improving the results obtained by current pattern recognition techniques like GMM, k-NN, SVM or Fisher Linear Discriminant. In addition, this system can be embedded in security systems to detect critical situations in accesses as cross-border control. Furthermore, its applications can be extended to other fields as vehicle driver state-of-mind management, medicine or sport training.
Resumo:
Actualmente la detección del rostro humano es un tema difícil debido a varios parámetros implicados. Llega a ser de interés cada vez mayor en diversos campos de aplicaciones como en la identificación personal, la interface hombre-máquina, etc. La mayoría de las imágenes del rostro contienen un fondo que se debe eliminar/discriminar para poder así detectar el rostro humano. Así, este proyecto trata el diseño y la implementación de un sistema de detección facial humana, como el primer paso en el proceso, dejando abierto el camino, para en un posible futuro, ampliar este proyecto al siguiente paso, que sería, el Reconocimiento Facial, tema que no trataremos aquí. En la literatura científica, uno de los trabajos más importantes de detección de rostros en tiempo real es el algoritmo de Viola and Jones, que ha sido tras su uso y con las librerías de Open CV, el algoritmo elegido para el desarrollo de este proyecto. A continuación explicaré un breve resumen sobre el funcionamiento de mi aplicación. Mi aplicación puede capturar video en tiempo real y reconocer el rostro que la Webcam captura frente al resto de objetos que se pueden visualizar a través de ella. Para saber que el rostro es detectado, éste es recuadrado en su totalidad y seguido si este mueve. A su vez, si el usuario lo desea, puede guardar la imagen que la cámara esté mostrando, pudiéndola almacenar en cualquier directorio del PC. Además, incluí la opción de poder detectar el rostro humano sobre una imagen fija, cualquiera que tengamos guardada en nuestro PC, siendo mostradas el número de caras detectadas y pudiendo visualizarlas sucesivamente cuantas veces queramos. Para todo ello como bien he mencionado antes, el algoritmo usado para la detección facial es el de Viola and Jones. Este algoritmo se basa en el escaneo de toda la superficie de la imagen en busca del rostro humano, para ello, primero la imagen se transforma a escala de grises y luego se analiza dicha imagen, mostrando como resultado el rostro encuadrado. ABSTRACT Currently the detection of human face is a difficult issue due to various parameters involved. Becomes of increasing interest in various fields of applications such as personal identification, the man-machine interface, etc. Most of the face images contain a fund to be removed / discriminate in order to detect the human face. Thus, this project is the design and implementation of a human face detection system, as the first step in the process, leaving the way open for a possible future, extend this project to the next step would be, Facial Recognition , a topic not covered here. In the literature, one of the most important face detection in real time is the algorithm of Viola and Jones, who has been after use with Open CV libraries, the algorithm chosen for the development of this project. I will explain a brief summary of the performance of my application. My application can capture video in real time and recognize the face that the Webcam Capture compared to other objects that can be viewed through it. To know that the face is detected, it is fully boxed and followed if this move. In turn, if the user may want to save the image that the camera is showing, could store in any directory on your PC. I also included the option to detect the human face on a still image, whatever we have stored in your PC, being shown the number of faces detected and can view them on more times. For all as well I mentioned before, the algorithm used for face detection is that of Viola and Jones. This algorithm is based on scanning the entire surface of the image for the human face, for this, first the image is converted to gray-scale and then analyzed the image, showing results in the face framed.
Resumo:
We are investigating the performances of a data acquisition system for Time of Flight PET, based on LYSO crystal slabs and 64 channels Silicon Photomultipliers matrices (1.2 cm2 of active area each). Measurements have been performed to test the timing capability of the detection system (SiPM matices coupled to a LYSO slab and the read-out electronics) with both test signal and radioactive source.
Resumo:
En esta tesis doctoral se describe el trabajo de investigación enfocado al estudio y desarrollo de sensores de fibra óptica para la detección de presión, flujo y vibraciones en ductos ascendentes submarinos utilizados en la extracción y transporte de hidrocarburos, con el objetivo de aplicarlos en los campos de explotación de aguas profundas en el Golfo de México pertenecientes a la Industria Petrolera Mexicana. El trabajo se ha enfocado al estudio y desarrollo de sensores ópticos cuasi distribuidos y distribuidos. En especial se ha profundizado en el uso y aplicación de las redes de Bragg (FBG) y de reflectómetros ópticos en el dominio del tiempo sensible a la fase (φ-OTDR). Los sensores de fibra óptica son especialmente interesantes para estas aplicaciones por sus ventajosas características como su inmunidad a interferencias electromagnéticas, capacidad de multiplexado, fiabilidad para trabajar en ambientes hostiles, altas temperaturas, altas presiones, ambientes salino-corrosivos, etc. Además, la fibra óptica no solo es un medio sensor sino que puede usarse como medio de transmisión. Se ha realizado un estudio del estado del arte y las ventajas que presentan los sensores ópticos puntuales, cuasi-distribuidos y distribuidos con respecto a los sensores convencionales. Se han estudiado y descrito los interrogadores de redes de Bragg y se ha desarrollado un método de calibración útil para los interrogadores existentes en el mercado, consiguiendo incertidumbres en la medida de la longitud de onda menores de ± 88 nm e incertidumbres relativas (la mas interesante en el campo de los sensores) menores de ±3 pm. Centrándose en la aplicación de las redes de Bragg en la industria del petróleo, se ha realizado un estudio en detalle del comportamiento que presentan las FBGs en un amplio rango de temperaturas de -40 ºC a 500 oC. Como resultado de este estudio se han evaluado las diferencias en los coeficientes de temperatura en diversos tramos de mas mismas, así como para diferentes recubrimientos protectores. En especial se ha encontrado y evaluado las diferencias de los diferentes recubrimientos en el intervalo de temperaturas entre -40 ºC y 60 ºC. En el caso del intervalo de altas temperaturas, entre 100 ºC y 500 ºC, se ha medido y comprobado el cambio uniforme del coeficiente de temperatura en 1pm/ºC por cada 100 ºC de aumento de temperatura, en redes independientemente del fabricante de las mismas. Se ha aplicado las FBG a la medición de manera no intrusiva de la presión interna en una tubería y a la medición del caudal de un fluido en una tubería, por la medida de diferencia de presión entre dos puntos de la misma. Además se ha realizado un estudio de detección de vibraciones en tuberías con fluidos. Finalmente, se ha implementado un sistema de detección distribuida de vibraciones aplicable a la detección de intrusos en las proximidades de los ductos, mediante un φ-OTDR. En este sistema se ha estudiado el efecto negativo de la inestabilidad de modulación que limita la detección de vibraciones distribuidas, su sensibilidad y su alcance. ABSTRACT This thesis describes the research work focused for the study and development of on optical fiber sensors for detecting pressure, flow and vibration in subsea pipes used in the extraction and transportation of hydrocarbons, in order to apply them in deepwater fields in the Gulf of Mexico belonging to the Mexican oil industry. The work has focused on the study and development of optical sensors distributed and quasi distributed. Especially was done on the use and application of fiber Bragg grating (FBG) and optical reflectometers time domain phase sensitive (φ-OTDR). The optical fiber sensors especially are interesting for these applications for their advantageous characteristics such as immunity to electromagnetic interference, multiplexing capability, reliability to work in harsh environments, high temperatures, high pressures, corrosive saline environments, etc. Furthermore, the optical fiber is not only a sensor means it can be used as transmission medium. We have performed a study of the state of the art and the advantages offered by optical sensors point, quasi-distributed and distributed over conventional sensors. Have studied and described interrogators Bragg grating and has developed a calibration method for interrogators useful for the existing interrogators in the market, resulting uncertainty in the measurement of the wavelength of less than ± 0.17 nm and uncertainties (the more interesting in the field of sensors) less than ± 3 pm. Focusing on the application of the Bragg gratings in the oil industry, has been studied in detail the behavior of the FBGs in a wide range of temperatures from -40 °C to 500 oC. As a result of this study we have evaluated the difference in temperature coefficients over various sections of the same, as well as different protective coatings. In particular evaluated and found the differences coatings in the range of temperatures between -40 º C and 60 º C. For the high temperature range between 20 ° C and 500 ° C, has been measured and verified the uniform change of the temperature coefficient at 1pm / ° C for each 100 ° C increase in temperature, in networks regardless of manufacturer thereof. FBG is applied to the non-intrusive measurement of internal pressure in a pipeline and measuring flow of a fluid in a pipe, by measuring the pressure difference between two points thereof. Therefore, has also made a study of detecting vibrations in pipes with fluids. Finally, we have implemented a distributed sensing system vibration applied to intrusion detection in the vicinity of the pipelines, by φ-OTDR. In this system we have studied the negative effect of modulation instability limits the distributed vibration detection, sensitivity and scope.
Resumo:
Los avances en el hardware permiten disponer de grandes volúmenes de datos, surgiendo aplicaciones que deben suministrar información en tiempo cuasi-real, la monitorización de pacientes, ej., el seguimiento sanitario de las conducciones de agua, etc. Las necesidades de estas aplicaciones hacen emerger el modelo de flujo de datos (data streaming) frente al modelo almacenar-para-despuésprocesar (store-then-process). Mientras que en el modelo store-then-process, los datos son almacenados para ser posteriormente consultados; en los sistemas de streaming, los datos son procesados a su llegada al sistema, produciendo respuestas continuas sin llegar a almacenarse. Esta nueva visión impone desafíos para el procesamiento de datos al vuelo: 1) las respuestas deben producirse de manera continua cada vez que nuevos datos llegan al sistema; 2) los datos son accedidos solo una vez y, generalmente, no son almacenados en su totalidad; y 3) el tiempo de procesamiento por dato para producir una respuesta debe ser bajo. Aunque existen dos modelos para el cómputo de respuestas continuas, el modelo evolutivo y el de ventana deslizante; éste segundo se ajusta mejor en ciertas aplicaciones al considerar únicamente los datos recibidos más recientemente, en lugar de todo el histórico de datos. En los últimos años, la minería de datos en streaming se ha centrado en el modelo evolutivo. Mientras que, en el modelo de ventana deslizante, el trabajo presentado es más reducido ya que estos algoritmos no sólo deben de ser incrementales si no que deben borrar la información que caduca por el deslizamiento de la ventana manteniendo los anteriores tres desafíos. Una de las tareas fundamentales en minería de datos es la búsqueda de agrupaciones donde, dado un conjunto de datos, el objetivo es encontrar grupos representativos, de manera que se tenga una descripción sintética del conjunto. Estas agrupaciones son fundamentales en aplicaciones como la detección de intrusos en la red o la segmentación de clientes en el marketing y la publicidad. Debido a las cantidades masivas de datos que deben procesarse en este tipo de aplicaciones (millones de eventos por segundo), las soluciones centralizadas puede ser incapaz de hacer frente a las restricciones de tiempo de procesamiento, por lo que deben recurrir a descartar datos durante los picos de carga. Para evitar esta perdida de datos, se impone el procesamiento distribuido de streams, en concreto, los algoritmos de agrupamiento deben ser adaptados para este tipo de entornos, en los que los datos están distribuidos. En streaming, la investigación no solo se centra en el diseño para tareas generales, como la agrupación, sino también en la búsqueda de nuevos enfoques que se adapten mejor a escenarios particulares. Como ejemplo, un mecanismo de agrupación ad-hoc resulta ser más adecuado para la defensa contra la denegación de servicio distribuida (Distributed Denial of Services, DDoS) que el problema tradicional de k-medias. En esta tesis se pretende contribuir en el problema agrupamiento en streaming tanto en entornos centralizados y distribuidos. Hemos diseñado un algoritmo centralizado de clustering mostrando las capacidades para descubrir agrupaciones de alta calidad en bajo tiempo frente a otras soluciones del estado del arte, en una amplia evaluación. Además, se ha trabajado sobre una estructura que reduce notablemente el espacio de memoria necesario, controlando, en todo momento, el error de los cómputos. Nuestro trabajo también proporciona dos protocolos de distribución del cómputo de agrupaciones. Se han analizado dos características fundamentales: el impacto sobre la calidad del clustering al realizar el cómputo distribuido y las condiciones necesarias para la reducción del tiempo de procesamiento frente a la solución centralizada. Finalmente, hemos desarrollado un entorno para la detección de ataques DDoS basado en agrupaciones. En este último caso, se ha caracterizado el tipo de ataques detectados y se ha desarrollado una evaluación sobre la eficiencia y eficacia de la mitigación del impacto del ataque. ABSTRACT Advances in hardware allow to collect huge volumes of data emerging applications that must provide information in near-real time, e.g., patient monitoring, health monitoring of water pipes, etc. The data streaming model emerges to comply with these applications overcoming the traditional store-then-process model. With the store-then-process model, data is stored before being consulted; while, in streaming, data are processed on the fly producing continuous responses. The challenges of streaming for processing data on the fly are the following: 1) responses must be produced continuously whenever new data arrives in the system; 2) data is accessed only once and is generally not maintained in its entirety, and 3) data processing time to produce a response should be low. Two models exist to compute continuous responses: the evolving model and the sliding window model; the latter fits best with applications must be computed over the most recently data rather than all the previous data. In recent years, research in the context of data stream mining has focused mainly on the evolving model. In the sliding window model, the work presented is smaller since these algorithms must be incremental and they must delete the information which expires when the window slides. Clustering is one of the fundamental techniques of data mining and is used to analyze data sets in order to find representative groups that provide a concise description of the data being processed. Clustering is critical in applications such as network intrusion detection or customer segmentation in marketing and advertising. Due to the huge amount of data that must be processed by such applications (up to millions of events per second), centralized solutions are usually unable to cope with timing restrictions and recur to shedding techniques where data is discarded during load peaks. To avoid discarding of data, processing of streams (such as clustering) must be distributed and adapted to environments where information is distributed. In streaming, research does not only focus on designing for general tasks, such as clustering, but also in finding new approaches that fit bests with particular scenarios. As an example, an ad-hoc grouping mechanism turns out to be more adequate than k-means for defense against Distributed Denial of Service (DDoS). This thesis contributes to the data stream mining clustering technique both for centralized and distributed environments. We present a centralized clustering algorithm showing capabilities to discover clusters of high quality in low time and we provide a comparison with existing state of the art solutions. We have worked on a data structure that significantly reduces memory requirements while controlling the error of the clusters statistics. We also provide two distributed clustering protocols. We focus on the analysis of two key features: the impact on the clustering quality when computation is distributed and the requirements for reducing the processing time compared to the centralized solution. Finally, with respect to ad-hoc grouping techniques, we have developed a DDoS detection framework based on clustering.We have characterized the attacks detected and we have evaluated the efficiency and effectiveness of mitigating the attack impact.
Resumo:
Los ataques a redes de información son cada vez más sofisticados y exigen una constante evolución y mejora de las técnicas de detección. Para ello, en este proyecto se ha diseñado e implementado una plataforma cooperativa para la detección de intrusiones basada en red. En primer lugar, se ha realizado un estudio teórico previo del marco tecnológico relacionado con este ámbito, en el que se describe y caracteriza el software que se utiliza para realizar ataques a sistemas (malware) así como los métodos que se utilizan para llegar a transmitir ese software (vectores de ataque). En el documento también se describen los llamados APT, que son ataques dirigidos con una gran inversión económica y temporal. Estos pueden englobar todos los malware y vectores de ataque existentes. Para poder evitar estos ataques, se estudiarán los sistemas de detección y prevención de intrusiones, describiendo brevemente los algoritmos que se tienden a utilizar en la actualidad. En segundo lugar, se ha planteado y desarrollado una plataforma en red dedicada al análisis de paquetes y conexiones para detectar posibles intrusiones. Este sistema está orientado a sistemas SCADA (Supervisory Control And Data Adquisition) aunque funciona sobre cualquier red IPv4/IPv6, para ello se definirá previamente lo que es un sistema SCADA, así como sus partes principales. Para implementar el sistema se han utilizado dispositivos de bajo consumo llamados Raspberry PI, estos se ubican entre la red y el equipo final que se quiera analizar. En ellos se ejecutan 2 aplicaciones desarrolladas de tipo cliente-servidor (la Raspberry central ejecutará la aplicación servidora y las esclavas la aplicación cliente) que funcionan de forma cooperativa utilizando la tecnología distribuida de Hadoop, la cual se explica previamente. Mediante esta tecnología se consigue desarrollar un sistema completamente escalable. La aplicación servidora muestra una interfaz gráfica que permite administrar la plataforma de análisis de forma centralizada, pudiendo ver así las alarmas de cada dispositivo y calificando cada paquete según su peligrosidad. El algoritmo desarrollado en la aplicación calcula el ratio de paquetes/tiempo que entran/salen del equipo final, procesando los paquetes y analizándolos teniendo en cuenta la información de señalización, creando diferentes bases de datos que irán mejorando la robustez del sistema, reduciendo así la posibilidad de ataques externos. Para concluir, el proyecto inicial incluía el procesamiento en la nube de la aplicación principal, pudiendo administrar así varias infraestructuras concurrentemente, aunque debido al trabajo extra necesario se ha dejado preparado el sistema para poder implementar esta funcionalidad. En el caso experimental actual el procesamiento de la aplicación servidora se realiza en la Raspberry principal, creando un sistema escalable, rápido y tolerante a fallos. ABSTRACT. The attacks to networks of information are increasingly sophisticated and demand a constant evolution and improvement of the technologies of detection. For this project it is developed and implemented a cooperative platform for detect intrusions based on networking. First, there has been a previous theoretical study of technological framework related to this area, which describes the software used for attacks on systems (malware) as well as the methods used in order to transmit this software (attack vectors). In this document it is described the APT, which are attacks directed with a big economic and time inversion. These can contain all existing malware and attack vectors. To prevent these attacks, intrusion detection systems and prevention intrusion systems will be discussed, describing previously the algorithms tend to use today. Secondly, a platform for analyzing network packets has been proposed and developed to detect possible intrusions in SCADA (Supervisory Control And Data Adquisition) systems. This platform is designed for SCADA systems (Supervisory Control And Data Acquisition) but works on any IPv4 / IPv6 network. Previously, it is defined what a SCADA system is and the main parts of it. To implement it, we used low-power devices called Raspberry PI, these are located between the network and the final device to analyze it. In these Raspberry run two applications client-server developed (the central Raspberry runs the server application and the slaves the client application) that work cooperatively using Hadoop distributed technology, which is previously explained. Using this technology is achieved develop a fully scalable system. The server application displays a graphical interface to manage analytics platform centrally, thereby we can see each device alarms and qualifying each packet by dangerousness. The algorithm developed in the application calculates the ratio of packets/time entering/leaving the terminal device, processing the packets and analyzing the signaling information of each packet, reating different databases that will improve the system, thereby reducing the possibility of external attacks. In conclusion, the initial project included cloud computing of the main application, being able to manage multiple concurrent infrastructure, but due to the extra work required has been made ready the system to implement this funcionality. In the current test case the server application processing is made on the main Raspberry, creating a scalable, fast and fault-tolerant system.
Resumo:
Detection of point mutations or single nucleotide polymorphisms (SNPs) is important in relation to disease susceptibility or detection in pathogens of mutations determining drug resistance or host range. There is an emergent need for rapid detection methods amenable to point-of-care applications. The purpose of this study was to reduce to practice a novel method for SNP detection and to demonstrate that this technology can be used downstream of nucleic acid amplification. The authors used a model system to develop an oligonucleotide-based SNP detection system on nitrocellulose lateral flow strips. To optimize the assay they used cloned sequences of the herpes simplex virus-1 (HSV-1) DNA polymerase gene into which they introduced a point mutation. The assay system uses chimeric polymerase chain reaction (PCR) primers that incorporate hexameric repeat tags ("hexapet tags"). The chimeric sequences allow capture of amplified products to predefined positions on a lateral flow strip. These "hexapet" sequences have minimal cross-reactivity and allow specific hybridization-based capture of the PCR products at room temperature onto lateral flow strips that have been striped with complementary hexapet tags. The allele-specific amplification was carried out with both mutant and wild-type primer sets present in the PCR mix ("competitive" format). The resulting PCR products carried a hexapet tag that corresponded with either a wild-type or mutant sequence. The lateral flow strips are dropped into the PCR reaction tube, and mutant sequence and wild-type sequences diffuse along the strip and are captured at the corresponding position on the strip. A red line indicative of a positive reaction is visible after 1 minute. Unlike other systems that require separate reactions and strips for each target sequence, this system allows multiplex PCR reactions and multiplex detection on a single strip or other suitable substrates. Unambiguous visual discrimination of a point mutation under room temperature hybridization conditions was achieved with this model system in 10 minutes after PCR. The authors have developed a capture-based hybridization method for the detection and discrimination of HSV-1 DNA polymerase genes that contain a single nucleotide change. It has been demonstrated that the hexapet oligonucleotides can be adapted for hybridization on the lateral flow strip platform for discrimination of SNPs. This is the first step in demonstrating SNP detection on lateral flow using the hexapet oligonucleotide capture system. It is anticipated that this novel system can be widely used in point-of-care settings.
Resumo:
Structural Health Monitoring (SHM) ensures the structural health and safety of critical structures covering a wide range of application areas. This thesis presents novel, low-cost and good-performance fibre Bragg grating (FBG) based systems for detection of Acoustic Emission (AE) in aircraft structures, which is a part of SHM. Importantly a key aim, during the design of these systems, was to produce systems that were sufficiently small to install in an aircraft for lifetime monitoring. Two important techniques for monitoring high frequency AE that were developed as a part of this research were, Quadrature recombination technique and Active tracking technique. Active tracking technique was used extensively and was further developed to overcome the limitations that were observed while testing it at several test facilities and with different optical fibre sensors. This system was able to eliminate any low frequency spectrum shift due to environmental perturbation and keeps the sensor always working at optimum operation point. This is highly desirable in harsh industrial and operationally active environments. Experimental work carried out in the laboratory has proved that such systems can be used for high frequency detection and have capability to detect up to 600 kHz. However, the range of frequency depends upon the requirement and design of the interrogation system as the system can be altered accordingly for different applications. Several optical fibre configurations for wavelength detection were designed during the course of this work along with industrial partners. Fibre Bragg grating Fabry-Perot (FBG-FP) sensors have shown higher sensitivity and usability than the uniform FBGs to be used with such system. This was shown experimentally. The author is certain that further research will lead to development of a commercially marketable product and the use of active tracking systems can be extended in areas of healthcare, civil infrastructure monitoring etc. where it can be deployed. Finally, the AE detection system has been developed to aerospace requirements and was tested at NDT & Testing Technology test facility based at Airbus, Filton, UK on A350 testing panels.
Resumo:
As microblog services such as Twitter become a fast and convenient communication approach, identification of trendy topics in microblog services has great academic and business value. However detecting trendy topics is very challenging due to huge number of users and short-text posts in microblog diffusion networks. In this paper we introduce a trendy topics detection system under computation and communication resource constraints. In stark contrast to retrieving and processing the whole microblog contents, we develop an idea of selecting a small set of microblog users and processing their posts to achieve an overall acceptable trendy topic coverage, without exceeding resource budget for detection. We formulate the selection operation of these subset users as mixed-integer optimization problems, and develop heuristic algorithms to compute their approximate solutions. The proposed system is evaluated with real-time test data retrieved from Sina Weibo, the dominant microblog service provider in China. It's shown that by monitoring 500 out of 1.6 million microblog users and tracking their microposts (about 15,000 daily) with our system, nearly 65% trendy topics can be detected, while on average 5 hours earlier before they appear in Sina Weibo official trends.
Resumo:
A long-period grating (LPG) sensor is used to detect small variations in the concentration of an organic aromatic compound (xylene) in a paraffin (heptane) solution. A new design procedure is adopted and demonstrated to maximize the sensitivity of LPG (wavelength shift for a change in the surrounding refractive index, (dλ/dn3)) for a given application. The detection method adopted is comparable to the standard technique used in industry (high performance liquid chromatograph and UV spectroscopy) which has a relative accuracy between ∼±0.5% and 5%. The minimum detectable change in volumetric concentration is 0.04% in a binary fluid with the detection system presented. This change of concentration relates to a change in refractive index of Δn ∼ 6 × 10-5. © 2001 Elsevier Science B.V.
Resumo:
We propose a cost-effective hot event detection system over Sina Weibo platform, currently the dominant microblogging service provider in China. The problem of finding a proper subset of microbloggers under resource constraints is formulated as a mixed-integer problem for which heuristic algorithms are developed to compute approximate solution. Preliminary results show that by tracking about 500 out of 1.6 million candidate microbloggers and processing 15,000 microposts daily, 62% of the hot events can be detected five hours on average earlier than they are published by Weibo.
Resumo:
The move from Standard Definition (SD) to High Definition (HD) represents a six times increases in data, which needs to be processed. With expanding resolutions and evolving compression, there is a need for high performance with flexible architectures to allow for quick upgrade ability. The technology advances in image display resolutions, advanced compression techniques, and video intelligence. Software implementation of these systems can attain accuracy with tradeoffs among processing performance (to achieve specified frame rates, working on large image data sets), power and cost constraints. There is a need for new architectures to be in pace with the fast innovations in video and imaging. It contains dedicated hardware implementation of the pixel and frame rate processes on Field Programmable Gate Array (FPGA) to achieve the real-time performance. ^ The following outlines the contributions of the dissertation. (1) We develop a target detection system by applying a novel running average mean threshold (RAMT) approach to globalize the threshold required for background subtraction. This approach adapts the threshold automatically to different environments (indoor and outdoor) and different targets (humans and vehicles). For low power consumption and better performance, we design the complete system on FPGA. (2) We introduce a safe distance factor and develop an algorithm for occlusion occurrence detection during target tracking. A novel mean-threshold is calculated by motion-position analysis. (3) A new strategy for gesture recognition is developed using Combinational Neural Networks (CNN) based on a tree structure. Analysis of the method is done on American Sign Language (ASL) gestures. We introduce novel point of interests approach to reduce the feature vector size and gradient threshold approach for accurate classification. (4) We design a gesture recognition system using a hardware/ software co-simulation neural network for high speed and low memory storage requirements provided by the FPGA. We develop an innovative maximum distant algorithm which uses only 0.39% of the image as the feature vector to train and test the system design. Database set gestures involved in different applications may vary. Therefore, it is highly essential to keep the feature vector as low as possible while maintaining the same accuracy and performance^
Resumo:
The sudden hydrocarbon influx from the formation into the wellbore poses a serious risk to the safety of the well. This sudden influx is termed a kick, which, if not controlled, may lead to a blowout. Therefore, early detection of the kick is crucial to minimize the possibility of a blowout occurrence. There is a high probability of delay in kick detection, apart from other issues when using a kick detection system that is exclusively based on surface monitoring. Down-hole monitoring techniques have a potential to detect a kick at its early stage. Down-hole monitoring could be particularly beneficial when the influx occurs as a result of a lost circulation scenario. In a lost circulation scenario, when the down-hole pressure becomes lower than the formation pore pressure, the formation fluid may starts to enter the wellbore. The lost volume of the drilling fluid is compensated by the formation fluid flowing into the well bore, making it difficult to identify the kick based on pit (mud tank) volume observations at the surface. This experimental study investigates the occurrence of a kick based on relative changes in the mass flow rate, pressure, density, and the conductivity of the fluid in the down-hole. Moreover, the parameters that are most sensitive to formation fluid are identified and a methodology to detect a kick without false alarms is reported. Pressure transmitter, the Coriolis flow and density meter, and the conductivity sensor are employed to observe the deteriorating well conditions in the down-hole. These observations are used to assess the occurrence of a kick and associated blowout risk. Monitoring of multiple down-hole parameters has a potential to improve the accuracy of interpretation related to kick occurrence, reduces the number of false alarms, and provides a broad picture of down-hole conditions. The down-hole monitoring techniques have a potential to reduce the kick detection period. A down-hole assembly of the laboratory scale drilling rig model and kick injection setup were designed, measuring instruments were acquired, a frame was fabricated, and the experimental set-up was assembled and tested. This set-up has the necessary features to evaluate kick events while implementing down-hole monitoring techniques. Various kick events are simulated on the drilling rig model. During the first set of experiments compressed air (which represents the formation fluid) is injected with constant pressure margin. In the second set of experiments the compressed air is injected with another pressure margin. The experiments are repeated with another pump (flow) rate as well. This thesis consists of three main parts. The first part gives the general introduction, motivation, outline of the thesis, and a brief description of influx: its causes, various leading and lagging indicators, and description of the several kick detection systems that are in practice in the industry. The second part describes the design and construction of the laboratory scale down-hole assembly of the drilling rig and kick injection setup, which is used to implement the proposed methodology for early kick detection. The third part discusses the experimental work, describes the methodology for early kick detection, and presents experimental results that show how different influx events affect the mass flow rate, pressure, conductivity, and density of the fluid in the down-hole, and the discussion of the results. The last chapter contains summary of the study and future research.
Resumo:
This thesis demonstrates a new way to achieve sparse biological sample detection, which uses magnetic bead manipulation on a digital microfluidic device. Sparse sample detection was made possible through two steps: sparse sample capture and fluorescent signal detection. For the first step, the immunological reaction between antibody and antigen enables the binding between target cells and antibody-‐‑ coated magnetic beads, hence achieving sample capture. For the second step, fluorescent detection is achieved via fluorescent signal measurement and magnetic bead manipulation. In those two steps, a total of three functions need to work together, namely magnetic beads manipulation, fluorescent signal measurement and immunological binding. The first function is magnetic bead manipulation, and it uses the structure of current-‐‑carrying wires embedded in the actuation electrode of an electrowetting-‐‑on-‐‑dielectric (EWD) device. The current wire structure serves as a microelectromagnet, which is capable of segregating and separating magnetic beads. The device can achieve high segregation efficiency when the wire spacing is 50µμm, and it is also capable of separating two kinds of magnetic beads within a 65µμm distance. The device ensures that the magnetic bead manipulation and the EWD function can be operated simultaneously without introducing additional steps in the fabrication process. Half circle shaped current wires were designed in later devices to concentrate magnetic beads in order to increase the SNR of sample detection. The second function is immunological binding. Immunological reaction kits were selected in order to ensure the compatibility of target cells, magnetic bead function and EWD function. The magnetic bead choice ensures the binding efficiency and survivability of target cells. The magnetic bead selection and binding mechanism used in this work can be applied to a wide variety of samples with a simple switch of the type of antibody. The last function is fluorescent measurement. Fluorescent measurement of sparse samples is made possible of using fluorescent stains and a method to increase SNR. The improved SNR is achieved by target cell concentration and reduced sensing area. Theoretical limitations of the entire sparse sample detection system is as low as 1 Colony Forming Unit/mL (CFU/mL).