866 resultados para Intestines - Inflammation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Until recently, the central nervous system (CNS) has been thought to be an immune privileged organ. However, it is now understood that neuroinflammation is linked with the development of several CNS diseases including late-onset Alzheimer's disease (LOAD). The development of inflammation is a complex process involving a wide array of molecular interactions which in the CNS remains to be further characterized. The development of neuroinflammation may represent an important link between the early stages of LOAD and its pathological outcome. It is proposed that risks for LOAD, which include genetic, biological and environmental factors can each contribute to impairment of normal CNS regulation and function. The links between risk factors and the development of neuroinflammation are numerous and involve many complex interactions which contribute to vascular compromise, oxidative stress and ultimately neuroinflammation. Once this cascade of events is initiated, the process of neuroinflammation can become overactivated resulting in further cellular damage and loss of neuronal function. Additionally, neuroinflammation has been associated with the formation of amyloid plaques and neurofibrillary tangles, the pathological hallmarks of LOAD. Increased levels of inflammatory markers have been correlated with an advanced cognitive impairment. Based on this knowledge, new therapies aimed at limiting onset of neuroinflammation could arrest or even reverse the development of the disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND & AIMS: Insulin-like growth factor (IGF) axis plays a key role in cell development, proliferation, and survival and is implicated in the etiology of several cancers. Few studies have examined the relationship between genetic variation of this axis and esophageal adenocarcinoma (EAC) or its precursors. METHODS: In a population-based case-control study, we investigated the association of common polymorphisms of IGF-1, IGF-2, IGF-1 receptor, IGF binding protein -3, growth hormones (GH) 1 and GH2, and GH receptor with reflux esophagitis (RE), Barrett esophagus (BE), and EAC. Two hundred and thirty RE, 224 BE, 227 EAC cases, and 260 controls were studied. Gene polymorphisms were identified using publicly available online resources; 102 IGF axis tag and putatively functional single-nucleotide polymorphisms (SNPs) were analyzed using MassARRAY iPLEX and Taqman assays. Results were analyzed using Haploview.
RESULTS: Three polymorphisms were disease-associated. IGF1 SNP rs6214 was associated with BE (adjusted P = .039). Using GG genotype as reference, odds ratio for BE in AA (wild-type) was 0.43 (95% confidence interval [CI], 0.24-0.75). GH receptor SNP rs6898743 was associated with EAC (adjusted P = .0112). With GG as reference, odds ratio for EAC in CC (wildtype) genotype was 0.42 (95% CI, 0.23-0.76). IGF1 (CA)(17) 185-bp allele was associated with RE (adjusted P = .0116). Using IGF1(non17) as reference, odds ratio for RE in IGF1(17) carriers was 7.29 (95% CI, 1.57-46.7).
CONCLUSIONS: In this study, 3 polymorphisms of IGF genes were associated with EAC or its precursors. These polymorphisms may be markers of disease risk; independent validation of our findings is required. These results suggest the IGF pathway is involved in EAC development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cystic Fibrosis (CF) is the most common fatal inherited disease of Caucasians, affecting about 1 in 3000 births. Patients with CF have a recessive mutation in the gene encoding the CF transmembrane conductance regulator (CFTR). CFTR is expressed in the epithelium of many organs throughout the exocrine system, however, inflammation and damage of the airways as a result of persistent progressive endobronchial infection is a central feature of CF. The inflammatory response to infection brings about a sustained recruitment of neutrophils to the site of infection. These neutrophils release various pro-inflammatory compounds including proteases, which when expressed at aberrant levels can overcome the endogenous antiprotease defence mechanisms of the lung. Unregulated, these proteases can exacerbate inflammation and result in the degradation of structural proteins and tissue damage leading to bronchiectasis and loss of respiratory function. Other host-derived and bacterial proteases may also contribute to the inflammation and lung destruction observed in the CF lung. Antiprotease strategies to dampen the excessive inflammatory response and concomitant damage to the airways remains an attractive therapeutic option for CF patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epidemiological studies show that some children develop wheezing after 3 yr of age which tends to persist. It is unknown how this starts or whether there is a period of asymptomatic inflammation. The aim of this study is to determine whether lower airway allergic inflammation pre-exists in late onset childhood wheeze (LOCW). Follow-up study of children below 5 yr who had a non-bronchoscopic bronchoalveolar lavage (BAL) performed during elective surgery. The children had acted as normal controls. A modified ISAAC questionnaire was sent out at least 7 yr following the initial BAL, and this was used to ascertain whether any children had subsequently developed wheezing or other atopic disease (eczema, allergic rhinitis). Cellular and cytokine data from the original BAL were compared between those who never wheezed (NW) and those who had developed LOCW. Eighty-one normal non-asthmatic children were recruited with a median age of 3.2 . Of the 65 children contactable, 9 (16.7%) had developed wheeze, 11 (18.5%) developed eczema and 14 (22.2%) developed hay fever. In five patients, wheeze symptoms developed mean 3.3- yr (range: 2–5 yr) post-BAL. Serum IgE and blood eosinophils were not different in the LOCW and NW, although the blood white cell count was lower in the LOCW group. The median BAL eosinophil % was significantly increased in the patients with LOCW (1.55%, IQR: 0.33 to 3.92) compared to the children who never wheezed, NW (0.1, IQR: 0.0 to 0.3, p = 0.01). No differences were detected for other cell types. There are no significant differences in BAL cytokine concentrations between children with LOCW and NW children. Before late onset childhood wheezing developed, we found evidence of elevated eosinophils in the airways. These data suggest pre-existent airways inflammation in childhood asthma some years before clinical presentation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Asthma is a major risk cofactor for anaphylactic deaths in children with peanut allergy. Peanut allergy is generally thought to be a lifelong condition, but some children outgrow their coexistent asthma. It has recently been shown that children who have ‘outgrown’ their asthma symptoms may have ongoing eosinophilic airways inflammation. The need for regular inhaled corticosteroid treatment in peanut allergic children and adolescents who have outgrown their asthma is however unclear. The aims of our study were to look at fractional exhaled nitric oxide levels (FeNO), as a non-invasive marker of eosinophilic airways inflammation, in peanut allergic children and assess whether children with outgrown asthma had elevated levels. Children with peanut allergy were recruited at two pediatric allergy clinics in Belfast, UK. Exhaled nitric oxide levels (FeNO) were measured using the Niox Mino in all children. Of the 101 peanut allergic children who consented for enrolment in the study, 94 were successfully able to use the NIOX Mino. Age range was 4–15 yr (median 10 yr); 61% were boys. Thirty (32%) had never wheezed, 37 (39%) had current treated asthma, 20 (21%) had at least 1 wheezing episode within the last year but were not taking any regular asthma medication (wheeze no treatment), and 7 (7%) had outgrown asthma. All children with outgrown asthma had elevated levels of FeNO (>35 ppb), and 75% of children defined as ‘wheeze no treatment’ had elevated FeNO levels (>35 ppb). Outgrown asthma and children defined as ‘wheeze no treatment’ had higher levels of FeNO than those with no history of wheeze or current treated asthma (p = 0.003). In children with peanut allergy, we found that those who had outgrown asthma had elevated FeNO levels in keeping with ongoing eosinophilic airways inflammation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purose: The traditional approach for identifying subjects at risk from cardiovascular diseases (CVD) is to determine the extent of clustering of biological risk factors adjusted for lifestyle. Recently, markers of endothelial dysfunction and low grade inflammation, including high sensitivity C-reactive protein (hsCRP), soluble intercellular adhesion molecules (sICAM), and soluble vascular adhesion molecules (sVCAM), have been included in the detection for high risk individuals. However, the relationship of these novel biomarkers with CVD risk in adolescents remains unclear. The purpose of this study, therefore, was to establish the association of hsCRP, sICAM, and sVCAM with CVD risk in an adolescent population.
Methods: Data from the Young Hearts 2000 cross-sectional cohort study, carried out in 1999-2001, were used. From a total of 2,017 male and female participants, 95 obese subjects were identified and matched according to age, sex, and cigarette smoking, with 95 overweight and 95 normal-weight adolescents. Clustered CVD risk was computed using a sum of Z-scores of biological risk factors. The relationship was described using multiple linear regression analyses.
Results: hsCRP, sICAM, and sVCAM showed significant associations with CVD risk. hsCRP and sICAM had a positive relation with CVD risk, whereas sVCAM showed an inverse relationship. In this study, lifestyle factors showed no relation with CVD risk.
Conclusion: The results fit the hypothesized role of low grade inflammation and endothelial dysfunction in CVD risk in asymptomatic adolescents. The inverse relationship of VCAM, however, is hard to explain and indicates the complex mechanisms underlying CVD. Further research is needed to draw firm conclusions on the biomarkers used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gastric inhibitory polypeptide (GIP) is produced within endocrine cells of the small intestine and released into the circulation upon nutrient ingestion. This study has quantified the levels of this insulinotropic peptide in the intestines of lean and diabetic obese ob/ob mice and estimated the proportion that is glycated. The total intestinal GIP concentration and content of the diabetic mice were significantly greater (p

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acetaminophen [N-acetyl-p-aminophenol (APAP)] is the most common antipyretic/analgesic medicine worldwide. If APAP is overdosed, its metabolite, N-acetyl-p-benzo-quinoneimine (NAPQI), causes liver damage. However, epidemiological evidence has associated previous use of therapeutic APAP doses with the risk of chronic obstructive pulmonary disease (COPD) and asthma. The transient receptor potential ankyrin-1 (TRPA1) channel is expressed by peptidergic primary sensory neurons. Because NAPQI, like other TRPA1 activators, is an electrophilic molecule, we hypothesized that APAP, via NAPQI, stimulates TRPA1, thus causing airway neurogenic inflammation. NAPQI selectively excites human recombinant and native (neuroblastoma cells) TRPA1. TRPA1 activation by NAPQI releases proinflammatory neuropeptides (substance P and calcitonin gene-related peptide) from sensory nerve terminals in rodent airways, thereby causing neurogenic edema and neutrophilia. Single or repeated administration of therapeutic (15-60 mg/kg) APAP doses to mice produces detectable levels of NAPQI in the lung, and increases neutrophil numbers, myeloperoxidase activity, and cytokine and chemokine levels in the airways or skin. Inflammatory responses evoked by NAPQI and APAP are abated by TRPA1 antagonism or are absent in TRPA1-deficient mice. This novel pathway, distinguished from the tissue-damaging effect of NAPQI, may contribute to the risk of COPD and asthma associated with therapeutic APAP use.-Nassini, R., Materazzi, S., Andre, E., Sartiani, L., Aldini, G., Trevisani, M., Carnini, C., Massi, D., Pedretti, P., Carini, M., Cerbai, E., Preti, D., Villetti, G., Civelli, M., Trevisan, G., Azzari, C., Stokesberry, S., Sadofsky, L., McGarvey, L., Patacchini, R., Geppetti, P. Acetaminophen, via its reactive metabolite N-acetyl-p-benzo-quinoneimine and transient receptor potential ankyrin-1 stimulation causes neurogenic inflammation in the airways and other tissues in rodents. FASEB J. 24, 4904-4916 (2010). www.fasebj.org