988 resultados para Interstitial fibrosis


Relevância:

20.00% 20.00%

Publicador:

Resumo:

To understand the molecular pathogenesis of oral submucous fibrosis (OSF), which is a chronic inflammatory disease, gene expression profiling was performed in 10 OSF tissues against 8 pooled normal tissues using oligonucleotide arrays. Microarray results revealed differential expression of 5288 genes (P < a parts per thousand currency sign 0.05 and fold change >= a parts per thousand yen 1.5). Among these, 2884 are upregulated and 2404 are downregulated. Validation employing quantitative real-time PCR and immunohistochemistry confirmed upregulation of transforming growth factor-beta beta 1 (TGF-beta beta 1), TGFBIp, THBS1, SPP1, and TIG1 and downregulation of bone morphogenic protein 7 (BMP7) in OSF tissues. Furthermore, activation of TGF-beta beta pathway was evident in OSF as demonstrated by pSMAD2 strong immunoreactivity. Treatment of keratinocytes and oral fibroblasts by TGF-beta beta confirmed the regulation of few genes identified in microarray including upregulation of connective tissue growth factor, TGM2, THBS1, and downregulation of BMP7, which is a known negative modulator of fibrosis. Taken together, these data suggest activation of TGF-beta beta signaling and suppression of BMP7 expression in the manifestation of OSF.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, severe plastic deformation (SPD) of Ti-bearing interstitial-free steel was carried out by multi-axial forging (MAF) technique. The grain refinement achieved was comparable to that by other SPD techniques. A considerable heterogeneity was observed in the microstructure and texture. Texture of multi-axially forged steels has been evaluated and reported for the first time. The material exhibited a six-fold increase in the yield strength after four cycles of MAF.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a comprehensive numerical study of spiral-and scroll-wave dynamics in a state-of-the-art mathematical model for human ventricular tissue with fiber rotation, transmural heterogeneity, myocytes, and fibroblasts. Our mathematical model introduces fibroblasts randomly, to mimic diffuse fibrosis, in the ten Tusscher-Noble-Noble-Panfilov (TNNP) model for human ventricular tissue; the passive fibroblasts in our model do not exhibit an action potential in the absence of coupling with myocytes; and we allow for a coupling between nearby myocytes and fibroblasts. Our study of a single myocyte-fibroblast (MF) composite, with a single myocyte coupled to N-f fibroblasts via a gap-junctional conductance G(gap), reveals five qualitatively different responses for this composite. Our investigations of two-dimensional domains with a random distribution of fibroblasts in a myocyte background reveal that, as the percentage P-f of fibroblasts increases, the conduction velocity of a plane wave decreases until there is conduction failure. If we consider spiral-wave dynamics in such a medium we find, in two dimensions, a variety of nonequilibrium states, temporally periodic, quasiperiodic, chaotic, and quiescent, and an intricate sequence of transitions between them; we also study the analogous sequence of transitions for three-dimensional scroll waves in a three-dimensional version of our mathematical model that includes both fiber rotation and transmural heterogeneity. We thus elucidate random-fibrosis-induced nonequilibrium transitions, which lead to conduction block for spiral waves in two dimensions and scroll waves in three dimensions. We explore possible experimental implications of our mathematical and numerical studies for plane-, spiral-, and scroll-wave dynamics in cardiac tissue with fibrosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oral submucous fibrosis (OSF) is a chronic inflammatory disease characterized by the accumulation of excess collagen, and areca nut chewing has been proposed as an important etiological factor for disease manifestation. Activation of transforming growth factor-beta signaling has been postulated as the main causative event for increased collagen production in OSF. Oral epithelium plays important roles in OSF, and arecoline has been shown to induce TGF-beta in epithelial cells. In an attempt to understand the role of areca nut constituents in the manifestation of OSF, we studied the global gene expression profile in epithelial cells (HaCaT) following treatment with areca nut water extract or TGF-beta. Interestingly, 64% of the differentially regulated genes by areca nut water extract matches with the TGF-beta induced gene expression profile. Out of these, expression of 57% of genes was compromised in the presence of ALK5 (T beta RI) inhibitor and 7% were independently induced by areca nut, highlighting the importance of TGF-beta in areca nut actions. Areca nut water extract treatment induced p-SMAD2 and TGF-beta downstream targets in HaCaT cells but not in human gingival fibroblast cells (hGF), suggesting epithelial cells could be the source of TGF-beta in promoting OSF. Water extract of areca nut consists of polyphenols and alkaloids. Both polyphenol and alkaloid fractions of areca nut were able to induce TGF-beta signaling and its downstream targets. Also, SMAD-2 was phosphorylated following treatment of HaCaT cells by Catechin, Tannin and alkaloids namely Arecoline, Arecaidine and Guvacine. Moreover, both polyphenols and alkaloids induced TGF-beta 2 and THBS1 (activator of latent TGF-beta) in HaCaT cells suggesting areca nut mediated activation of p-SMAD2 involves up-regulation and activation of TGF-beta. These data suggest a major causative role for TGF-beta that is induced by areca nut in OSF progression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bulk texture measurement of multi-axial forged body center cubic interstitial free steel performed in this study using x-ray and neutron diffraction indicated the presence of a strong {101}aOE (c) 111 > single texture component. Viscoplastic self-consistent simulations could successfully predict the formation of this texture component by incorporating the complicated strain path followed during this process and assuming the activity of {101}aOE (c) 111 > slip system. In addition, a first-order estimate of mechanical properties in terms of highly anisotropic yield locus and Lankford parameter was also obtained from the simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple approach for obtaining room temperature ferroelectricity in ZnO rod structures at the nanoscale is reported. A systematic comparative study between two kinds of nanorods prepared by different processes reveals the physics behind it. It is observed that ZnO nanorods grown (in-situ) by a sol gel method on platinum substrate show ferroelectric behaviour. On the contrary, ZnO nanorods first grown by a sol gel method and then spin-coated on a platinum substrate (ex-situ) do not demonstrate this kind of feature. X-ray diffraction analysis confirms partially (002) and (100) plane oriented growth of both samples. From photoluminescence (PL) spectral analysis it is interpreted that oxygen vacancies/zinc interstitial defects, which arises from the large lattice mismatch between the Pt substrate and the ZnO nanorods grown thereon, and preferential ZnO growth along 002], can be causes of this type of phenomena. C-V characterization, P-E hysteresis loop along with piezoelectric force microscopy support this observation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Areca nut consumption has been implicated in the progression of Oral Submucous fibrosis (OSF); an inflammatory precancerous fibrotic condition. Our previous studies have demonstrated the activation of TGF-beta signaling in epithelial cells by areca nut components and also propose a role for epithelial expressed TGF-beta in the pathogenesis of OSF. Although the importance of epithelial cells in the manifestation of OSF has been proposed, the actual effectors are fibroblast cells. However, the role of areca nut and TGF-beta in the context of fibroblast response has not been elucidated. Therefore, to understand their role in the context of fibroblast response in OSF pathogenesis, human gingival fibroblasts (hGF) were treated with areca nut and/or TGF-beta followed by transcriptome profiling. The gene expression profile obtained was compared with the previously published transcriptome profiles of OSF tissues and areca nut treated epithelial cells. The analysis revealed regulation of 4666 and 1214 genes by areca nut and TGF-beta treatment respectively. The expression of 413 genes in hGF cells was potentiated by areca nut and TGF-beta together. Further, the differentially expressed genes of OSF tissues compared to normal tissues overlapped significantly with areca nut and TGF-beta induced genes in epithelial and hGF cells. Several positively enriched pathways were found to be common between OSF tissues and areca nut + TGF-beta treated hGF cells. In concordance, areca nut along with TGF-beta enhanced fibroblast activation as demonstrated by potentiation of alpha SMA, gamma SMA and collagen gel contraction by hGF cells. Furthermore, TGF-beta secreted by areca nut treated epithelial cells influenced fibroblast activation and other genes implicated in fibrosis. These data establish a role for areca nut influenced epithelial cells in OSF progression by activation of fibroblasts and emphasizes the importance of epithelial-mesenchymal interaction in OSF.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the dynamical behaviors of two types of spiral-and scroll-wave turbulence states, respectively, in two-dimensional (2D) and three-dimensional (3D) mathematical models, of human, ventricular, myocyte cells that are attached to randomly distributed interstitial fibroblasts; these turbulence states are promoted by (a) the steep slope of the action-potential-duration-restitution (APDR) plot or (b) early afterdepolarizations (EADs). Our single-cell study shows that (1) the myocyte-fibroblast (MF) coupling G(j) and (2) the number N-f of fibroblasts in an MF unit lower the steepness of the APDR slope and eliminate the EAD behaviors of myocytes; we explore the pacing dependence of such EAD suppression. In our 2D simulations, we observe that a spiral-turbulence (ST) state evolves into a state with a single, rotating spiral (RS) if either (a) G(j) is large or (b) the maximum possible number of fibroblasts per myocyte N-f(max) is large. We also observe that the minimum value of G(j), for the transition from the ST to the RS state, decreases as N-f(max) increases. We find that, for the steep-APDR-induced ST state, once the MF coupling suppresses ST, the rotation period of a spiral in the RS state increases as (1) G(j) increases, with fixed N-f(max), and (2) N-f(max) increases, with fixed G(j). We obtain the boundary between ST and RS stability regions in the N-f(max)-G(j) plane. In particular, for low values of N-f(max), the value of G(j), at the ST-RS boundary, depends on the realization of the randomly distributed fibroblasts; this dependence decreases as N-f(max) increases. Our 3D studies show a similar transition from scroll-wave turbulence to a single, rotating, scroll-wave state because of the MF coupling. We examine the experimental implications of our study and propose that the suppression (a) of the steep slope of the APDR or (b) EADs can eliminate spiral-and scroll-wave turbulence in heterogeneous cardiac tissue, which has randomly distributed fibroblasts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exposure of oral cavity to areca nut is associated with several pathological conditions including oral submucous fibrosis (OSF). Histopathologically OSF is characterized by epithelial atrophy, chronic inflammation, juxtaepithelial hyalinization, leading to fibrosis of submucosal tissue and affects 0.5% of the population in the Indian subcontinent. As the molecular mechanisms leading to atrophied epithelium and fibrosis are poorly understood, we studied areca nut actions on human keratinocyte and gingival fibroblast cells. Areca nut water extract (ANW) was cytotoxic to epithelial cells and had a pro-proliferative effect on fibroblasts. This opposite effect of ANW on epithelial and fibroblast cells was intriguing but reflects the OSF histopathology such as epithelial atrophy and proliferation of fibroblasts. We demonstrate that the pro-proliferative effects of ANW on fibroblasts are dependent on insulin-like growth factor signalling while the cytotoxic effects on keratinocytes are dependent on the generation of reactive oxygen species. Treatment of keratinocytes with arecoline which is a component of ANW along with copper resulted in enhanced cytotoxicity which becomes comparable to IC50 of ANW. Furthermore, studies using cyclic voltammetry, mass spectrometry and plasmid cleavage assay suggested that the presence of arecoline increases oxidation reduction potential of copper leading to enhanced cleavage of DNA which could generate an apoptotic response. Terminal deoxynucleotidyl transferase dUTP Nick End Labeling assay and Ki-67 index of OSF tissue sections suggested epithelial apoptosis, which could be responsible for the atrophy of OSF epithelium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resumen: El siguiente texto es la transcripción literal de la recomendación del Comité de Bioética del INCUCAI, [1] elaborada a partir de la demanda del Directorio de la institución en reunión extraordinaria para analizar el requerimiento de excepción para el trasplante pulmonar con donante vivo relacionado en favor de las pacientes hermanas mellizas, M. del V. y M. O., que padecen fibrosis quística, inscriptas en lista de espera para trasplante pulmonar cadavérico. La misma fue expedida en la ciudad de Buenos Aires, el día 1 de septiembre de 2010 y firmada por las coordinadoras del Comité Lic. Roxana Fontana y Mgt. Prof. Beatriz Firmenich y por sus miembros permanentes Dra. Mirta Fernández y Dra. M. E. Barone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel member of the ATP-binding cassette (ABC) superfamily of membrane proteins. CFTR has two homologous halves, each consisting of six transmembrane spanning domains (TM) followed by a nucleotide binding fold, connected by a regulatory (R) domain. This thesis addresses the question of which domains are responsible for Cl^- selectivity, i.e., which domains line the channel pore.

To address this question, novel blockers of CFTR were characterized. CFTR was heterologously expressed in Xenopus oocytes to study the mechanism of block by two closely related arylaminobenzoates, diphenylamine-2-carboxylic acid (DPC) and flufenamic acid (FFA). Block by both is voltage-dependent, with a binding site ≈ 40% through the electric field of the membrane. DPC and FFA can both reach their binding site from either side of the membrane to produce a flickering block of CFTR single channels. In addition, DPC block is influenced by Cl^- concentration, and DPC blocks with a bimolecular forward binding rate and a unimolecular dissociation rate. Therefore, DPC and FFA are open-channel blockers of CFTR, and a residue of CFTR whose mutation affects their binding must line the pore.

Screening of site-directed mutants for altered DPC binding affinity reveals that TM-6 and TM-12 line the pore. Mutation of residue 5341 in TM-6 abolishes most DPC block, greatly reduces single-channel conductance, and alters the direction of current rectification. Additional residues are found in TM-6 (K335) and TM-12 (T1134) whose mutations weaken or strengthen DPC block; other mutations move the DPC binding site from TM-6 to TM-12. The strengthened block and lower conductance due to mutation T1134F is quantitated at the single-channel level. The geometry of DPC and of the residues mutated suggest α-helical structures for TM-6 and TM-12. Evidence is presented that the effects of the mutations are due to direct side-chain interaction, and not to allosteric effects propagated through the protein. Mutations are also made in TM-11, including mutation S1118F, which gives voltage-dependent current relaxations. The results may guide future studies on permeation through ABC transporters and through other Cl^- channels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A fibrose hepática é o aspecto mais relevante e o mais importante determinante de morbimortalidade na hepatite C crônica (HCC). Historicamente, a biópsia hepática é o método de referência para avaliação da fibrose causada pela HCC, apesar de apresentar limitações. O estudo de marcadores não invasivos, que possam obviar a necessidade da biópsia, é uma área de constante interesse na hepatologia. Idealmente, a avaliação da fibrose hepática deveria ser acurada, simples, prontamente disponível, de baixo custo e informar sobre o prognóstico da patologia. Os marcadores não invasivos mais estudados são a elastografia hepática transitória (EHT) e os laboratoriais. A EHT já foi extensamente validada na HCC e está inserida na rotina de avaliação destes pacientes. Dentre os laboratoriais, existem diversos testes em continua experimentação e, até o momento, nenhum foi integrado à prática clínica no Brasil, embora já aplicados rotineiramente em outros países. O Enhanced Liver Fibrosis (ELF), um teste que dosa no soro ácido hialurônico, pró-peptídeo amino-terminal do colágeno tipo III e inibidor tissular da metaloproteinase 1, tem se mostrado bastante eficaz na detecção de fibrose hepática significativa e de cirrose na HCC. Neste estudo o ELF teve o seu desempenho avaliado em relação a biópsia hepática e demonstrou apresentar boa acurácia na detecção tanto de fibrose significativa quanto de cirrose. Na comparação com a EHT apresentou acurácia semelhante para estes mesmos desfechos, com significância estatística. No entanto, foi observada uma superestimação da fibrose com a utilização dos pontos de corte propostos pelo fabricante. Este achado está em acordo com a literatura, onde não há consenso sobre o melhor ponto de corte a ser empregado na prática clínica. Com a ampliação da casuística foi possível propor novos pontos de corte, através da análise clássica, com a biópsia hepática como padrão ouro. O resultado obtido vai ao encontro do observado por outros autores. Em seguida, os novos pontos de corte do ELF foram reavaliados sem que a biópsia hepática fosse a referência, através da análise de classes latentes. Mais uma vez o ELF apresentou bom desempenho, inclusive com melhora de suas sensibilidade e especificidade em comparação com a análise clássica, onde a biópsia hepática é a referência. Assim sendo, é possível concluir que o ELF é um bom marcador não invasivo de fibrose hepática. No entanto, para detecção de fibrose significativa e cirrose, deve ser considerada a aplicação na prática clínica dos novos pontos de corte aqui propostos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Existe uma significativa associação entre a prevalência de doenças cardiovasculares e a síndrome metabólica. Evidências mostram que a obesidade está associada a alterações estruturais e funcionais do coração. As estatinas podem reduzir a síntese endógena de colesterol e, portanto, são utilizadas como uma importante ferramenta contra a hipercolesterolemia em pacientes obesos. O presente trabalho tem como objetivo estudar os efeitos da rosuvastatina no metabolismo lipídico e dos carboidratos, morfometria do tecido adiposo e no remodelamento cardíaco de camundongos alimentados com uma dieta hiperlipídica. Neste trabalho foram utilizados 50 camundongos distribuidos em cinco grupos: grupo controle (alimentado com dieta padrão), grupo hiperlipídico (alimentado com dieta hipelipídica 60%), grupo hiperlipídico + rosuvastatina 10 (alimentado com dieta hipelipídica 60% - acrescido de 10 mg de rosuvastatina), grupo hiperlipídico + rosuvastatina 20 (alimentado com dieta hipelipídica 60% - acrescido de 20 mg de rosuvastatina), grupo hiperlipídico + rosuvastatina 40 (alimentado com dieta hipelipídica 60% - acrescido de 40 mg de rosuvastatina). Foram estudados os efeitos do tratamento com diferentes doses de rosuvastatina na massa corporal, metabolismo dos carboidratos e lipídios, pressão arterial, remodelamento na estrutura cardíaca e mudanças ultraestruturais no coração de camundongos C57BL / 6 machos alimentados com uma dieta hiperlipídica. O tratamento com rosuvastatina reduziu os níveis de lípidos no sangue, melhorou a resistência à insulina e diminuiu a pressão arterial dos camundongos alimentados com dieta rica em lipídeos. Além disso, atenuou o remodelamento cardíaco, diminuindo a fibrose intersticial e perivascular, e manteve a integridade morfológica mitocondrial, com menor produção de proteina desacopladora-2 (UCP2). Assim, a rosuvastatina tem efeitos benéficos sobre as alterações metabólicas dos carboidratos e lipídios, e no remodelamento cardíaco induzidas por dieta hiperlipídica.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sediment redox potential was raised in the laboratory to estimate reduction of internal available phosphorus loads, such as soluble reactive phosphorus (SRP) and total phosphorus (TP), as well as the main elements of sediment extracts in Dianchi Lake. Several strongly reducing substances in sediments, which mainly originated from anaerobic decomposition of primary producer residues, were responsible for the lower redox potential. In a range of -400 to 200 mV raising the redox potential of sediments decreased TP and SRP in interstitial water. Redox potentials exceeding 320 mV caused increases in TP, whereas SRP maintained a relatively constant minimum level. The concentrations of Al, Fe, Ca2+, Mg2+, K+, Na+ and S in interstitial water were also related to the redox potential of sediments, suggesting that the mechanism for redox potential to regulate the concentration of phosphorus in interstitial water was complex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As-grown Fe-doped semi-insulating InP single crystal has been converted into n-type low-resistance material after high temperature annealing. Defects in the InP materials have been studied by conventional Hall effect measurement, thermally stimulated current spectroscopy, deep level transient spectroscopy and X-ray diffraction respectively. The results indicate that Fe atoms in the InP material change from the substitutional to the interstitial sites under thermal activation. Consequently, the InP material loses its deep compensation centers which results in the change in types of conduction. The mechanism and cause of the phenomena have been analyzed through comparison of the sites of Fe atom occupation and activation in doping, diffusion and ion implantation processes of InP.