856 resultados para Interpolation
Resumo:
Accurate measurement of intervertebral kinematics of the cervical spine can support the diagnosis of widespread diseases related to neck pain, such as chronic whiplash dysfunction, arthritis, and segmental degeneration. The natural inaccessibility of the spine, its complex anatomy, and the small range of motion only permit concise measurement in vivo. Low dose X-ray fluoroscopy allows time-continuous screening of cervical spine during patient's spontaneous motion. To obtain accurate motion measurements, each vertebra was tracked by means of image processing along a sequence of radiographic images. To obtain a time-continuous representation of motion and to reduce noise in the experimental data, smoothing spline interpolation was used. Estimation of intervertebral motion for cervical segments was obtained by processing patient's fluoroscopic sequence; intervertebral angle and displacement and the instantaneous centre of rotation were computed. The RMS value of fitting errors resulted in about 0.2 degree for rotation and 0.2 mm for displacements. © 2013 Paolo Bifulco et al.
Resumo:
Cardiotocographic data provide physicians information about foetal development and permit to assess conditions such as foetal distress. An incorrect evaluation of the foetal status can be of course very dangerous. To improve interpretation of cardiotocographic recordings, great interest has been dedicated to foetal heart rate variability spectral analysis. It is worth reminding, however, that foetal heart rate is intrinsically an uneven series, so in order to produce an evenly sampled series a zero-order, linear or cubic spline interpolation can be employed. This is not suitable for frequency analyses because interpolation introduces alterations in the foetal heart rate power spectrum. In particular, interpolation process can produce alterations of the power spectral density that, for example, affects the estimation of the sympatho-vagal balance (computed as low-frequency/high-frequency ratio), which represents an important clinical parameter. In order to estimate the frequency spectrum alterations of the foetal heart rate variability signal due to interpolation and cardiotocographic storage rates, in this work, we simulated uneven foetal heart rate series with set characteristics, their evenly spaced versions (with different orders of interpolation and storage rates) and computed the sympatho-vagal balance values by power spectral density. For power spectral density estimation, we chose the Lomb method, as suggested by other authors to study the uneven heart rate series in adults. Summarising, the obtained results show that the evaluation of SVB values on the evenly spaced FHR series provides its overestimation due to the interpolation process and to the storage rate. However, cubic spline interpolation produces more robust and accurate results. © 2010 Elsevier Ltd. All rights reserved.
Resumo:
2000 Mathematics Subject Classification: 41A05.
Resumo:
2010 Mathematics Subject Classification: Primary 65D30, 32A35, Secondary 41A55.
Resumo:
ACM Computing Classification System (1998): G.1.1, G.1.2.
Resumo:
2000 Mathematics Subject Classification: 46B50, 46B70, 46G12.
Resumo:
Heterogeneous datasets arise naturally in most applications due to the use of a variety of sensors and measuring platforms. Such datasets can be heterogeneous in terms of the error characteristics and sensor models. Treating such data is most naturally accomplished using a Bayesian or model-based geostatistical approach; however, such methods generally scale rather badly with the size of dataset, and require computationally expensive Monte Carlo based inference. Recently within the machine learning and spatial statistics communities many papers have explored the potential of reduced rank representations of the covariance matrix, often referred to as projected or fixed rank approaches. In such methods the covariance function of the posterior process is represented by a reduced rank approximation which is chosen such that there is minimal information loss. In this paper a sequential Bayesian framework for inference in such projected processes is presented. The observations are considered one at a time which avoids the need for high dimensional integrals typically required in a Bayesian approach. A C++ library, gptk, which is part of the INTAMAP web service, is introduced which implements projected, sequential estimation and adds several novel features. In particular the library includes the ability to use a generic observation operator, or sensor model, to permit data fusion. It is also possible to cope with a range of observation error characteristics, including non-Gaussian observation errors. Inference for the covariance parameters is explored, including the impact of the projected process approximation on likelihood profiles. We illustrate the projected sequential method in application to synthetic and real datasets. Limitations and extensions are discussed. © 2010 Elsevier Ltd.
Resumo:
Peer reviewed
Resumo:
Energy saving, reduction of greenhouse gasses and increased use of renewables are key policies to achieve the European 2020 targets. In particular, distributed renewable energy sources, integrated with spatial planning, require novel methods to optimise supply and demand. In contrast with large scale wind turbines, small and medium wind turbines (SMWTs) have a less extensive impact on the use of space and the power system, nevertheless, a significant spatial footprint is still present and the need for good spatial planning is a necessity. To optimise the location of SMWTs, detailed knowledge of the spatial distribution of the average wind speed is essential, hence, in this article, wind measurements and roughness maps were used to create a reliable annual mean wind speed map of Flanders at 10 m above the Earth’s surface. Via roughness transformation, the surface wind speed measurements were converted into meso- and macroscale wind data. The data were further processed by using seven different spatial interpolation methods in order to develop regional wind resource maps. Based on statistical analysis, it was found that the transformation into mesoscale wind, in combination with Simple Kriging, was the most adequate method to create reliable maps for decision-making on optimal production sites for SMWTs in Flanders (Belgium).
Resumo:
A novel surrogate model is proposed in lieu of Computational Fluid Dynamics (CFD) solvers, for fast nonlinear aerodynamic and aeroelastic modeling. A nonlinear function is identified on selected interpolation points by
a discrete empirical interpolation method (DEIM). The flow field is then reconstructed using a least square approximation of the flow modes extracted
by proper orthogonal decomposition (POD). The aeroelastic reduce order
model (ROM) is completed by introducing a nonlinear mapping function
between displacements and the DEIM points. The proposed model is investigated to predict the aerodynamic forces due to forced motions using
a N ACA 0012 airfoil undergoing a prescribed pitching oscillation. To investigate aeroelastic problems at transonic conditions, a pitch/plunge airfoil
and a cropped delta wing aeroelastic models are built using linear structural models. The presence of shock-waves triggers the appearance of limit
cycle oscillations (LCO), which the model is able to predict. For all cases
tested, the new ROM shows the ability to replicate the nonlinear aerodynamic forces, structural displacements and reconstruct the complete flow
field with sufficient accuracy at a fraction of the cost of full order CFD
model.
Resumo:
A novel surrogate model is proposed in lieu of computational fluid dynamic (CFD) code for fast nonlinear aerodynamic modeling. First, a nonlinear function is identified on selected interpolation points defined by discrete empirical interpolation method (DEIM). The flow field is then reconstructed by a least square approximation of flow modes extracted by proper orthogonal decomposition (POD). The proposed model is applied in the prediction of limit cycle oscillation for a plunge/pitch airfoil and a delta wing with linear structural model, results are validate against a time accurate CFD-FEM code. The results show the model is able to replicate the aerodynamic forces and flow fields with sufficient accuracy while requiring a fraction of CFD cost.
Resumo:
We present new methodologies to generate rational function approximations of broadband electromagnetic responses of linear and passive networks of high-speed interconnects, and to construct SPICE-compatible, equivalent circuit representations of the generated rational functions. These new methodologies are driven by the desire to improve the computational efficiency of the rational function fitting process, and to ensure enhanced accuracy of the generated rational function interpolation and its equivalent circuit representation. Toward this goal, we propose two new methodologies for rational function approximation of high-speed interconnect network responses. The first one relies on the use of both time-domain and frequency-domain data, obtained either through measurement or numerical simulation, to generate a rational function representation that extrapolates the input, early-time transient response data to late-time response while at the same time providing a means to both interpolate and extrapolate the used frequency-domain data. The aforementioned hybrid methodology can be considered as a generalization of the frequency-domain rational function fitting utilizing frequency-domain response data only, and the time-domain rational function fitting utilizing transient response data only. In this context, a guideline is proposed for estimating the order of the rational function approximation from transient data. The availability of such an estimate expedites the time-domain rational function fitting process. The second approach relies on the extraction of the delay associated with causal electromagnetic responses of interconnect systems to provide for a more stable rational function process utilizing a lower-order rational function interpolation. A distinctive feature of the proposed methodology is its utilization of scattering parameters. For both methodologies, the approach of fitting the electromagnetic network matrix one element at a time is applied. It is shown that, with regard to the computational cost of the rational function fitting process, such an element-by-element rational function fitting is more advantageous than full matrix fitting for systems with a large number of ports. Despite the disadvantage that different sets of poles are used in the rational function of different elements in the network matrix, such an approach provides for improved accuracy in the fitting of network matrices of systems characterized by both strongly coupled and weakly coupled ports. Finally, in order to provide a means for enforcing passivity in the adopted element-by-element rational function fitting approach, the methodology for passivity enforcement via quadratic programming is modified appropriately for this purpose and demonstrated in the context of element-by-element rational function fitting of the admittance matrix of an electromagnetic multiport.
Resumo:
Water regimes in the Brazilian Cerrados are sensitive to climatological disturbances and human intervention. The risk that critical water-table levels are exceeded over long periods of time can be estimated by applying stochastic methods in modeling the dynamic relationship between water levels and driving forces such as precipitation and evapotranspiration. In this study, a transfer function-noise model, the so called PIRFICT-model, is applied to estimate the dynamic relationship between water-table depth and precipitation surplus/deficit in a watershed with a groundwater monitoring scheme in the Brazilian Cerrados. Critical limits were defined for a period in the Cerrados agricultural calendar, the end of the rainy season, when extremely shallow levels (< 0.5-m depth) can pose a risk to plant health and machinery before harvesting. By simulating time-series models, the risk of exceeding critical thresholds during a continuous period of time (e.g. 10 days) is described by probability levels. These simulated probabilities were interpolated spatially using universal kriging, incorporating information related to the drainage basin from a digital elevation model. The resulting map reduced model uncertainty. Three areas were defined as presenting potential risk at the end of the rainy season. These areas deserve attention with respect to water-management and land-use planning.
Resumo:
Knowledge of the geographical distribution of timber tree species in the Amazon is still scarce. This is especially true at the local level, thereby limiting natural resource management actions. Forest inventories are key sources of information on the occurrence of such species. However, areas with approved forest management plans are mostly located near access roads and the main industrial centers. The present study aimed to assess the spatial scale effects of forest inventories used as sources of occurrence data in the interpolation of potential species distribution models. The occurrence data of a group of six forest tree species were divided into four geographical areas during the modeling process. Several sampling schemes were then tested applying the maximum entropy algorithm, using the following predictor variables: elevation, slope, exposure, normalized difference vegetation index (NDVI) and height above the nearest drainage (HAND). The results revealed that using occurrence data from only one geographical area with unique environmental characteristics increased both model overfitting to input data and omission error rates. The use of a diagonal systematic sampling scheme and lower threshold values led to improved model performance. Forest inventories may be used to predict areas with a high probability of species occurrence, provided they are located in forest management plan regions representative of the environmental range of the model projection area.