792 resultados para Interoperable Home Energy Management Systems (HEMS)
Resumo:
This paper presents the operational analysis of the single-phase integrated buck-boost inverter. This topology is able to convert the DC input voltage into AC voltage with a high static gain, low harmonic content and acceptable efficiency, all in one single-stage. Main functionality aspects are explained, design procedure, system modeling and control, and also component requirements are detailed. Main simulation results are included, and two prototypes were implemented and experimentally tested, where its results are compared with those corresponding to similar topologies available in literature. © 2012 IEEE.
Resumo:
Presenta el resumen del informe y las recomendaciones del taller que tuvo como objetivo estudiar las posibilidades para establecer un sistema de informacion en energia en el Caribe.
Resumo:
Organizations often operate in turbulent environments characterized by intense competitiveness, constant technological progress, new market requirements, and scarce natural resources. This scenario imposes the constant need for change in the operation and companies' management. The integration of certifiable management systems is an effective alternative in this sense. The objective of the present study is to propose guidelines for the integration of the ISO 9001 Quality Management System (QMS), ISO 14001 Environmental Management System (EMS) and OHSAS 18001 Occupational Health and Safety Management System (OHSMS) in industrial companies. These guidelines were developed based on a theoretical framework and on the results from fourteen case studies performed in Brazilian industrial companies. The proposed guidelines were divided into three phases: A) integration planning, b) integration development, and c) integration control and improvement.
Resumo:
This study aimed to investigate the potential use of magnetic susceptibility (MS) as pedotransfer function to predict soil attributes under two sugarcane harvesting management systems. For each area of 1 ha (one with green sugarcane mechanized harvesting and other one with burnt sugarcane manual harvesting), 126 soil samples were collected and subjected to laboratory analysis to determine soil physical, chemical and mineralogical attributes and for measuring of MS. Data were submitted to descriptive statistics by calculating the mean and coefficient of variation. In order to compare the means in the different harvesting management systems it was carried out the Tukey test at a significance level of 5%. In order to investigate the correlation of the MS with other soil properties it was made the correlation test and aiming to assess how the MS contributes to the prediction of soil complex attributes it was made the multiple linear regressions. The results demonstrate that MS showed, in both sugarcane harvesting management systems, statistical correlation with chemical, physical and mineralogical soil attributes and it also showed potential to be used as pedotransfer function to predict attributes of the studied oxisol.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The evaluation of technologies employed at the agricultural production system such as crop rotation and soil preparation, both associated with crop-livestock integration, is crucial. Therefore, the aim of the present study was to evaluate the incorporation of lime for three no-tillage systems and cultural managements in system of crop-livestock integration, with emphasis on corn grain yield. The experiment was conducted from January 2003 to April 2005 at Selvíria city, MS, in Dystroferric Red Latosol, clay texture. The experimental design was randomized blocks with split plots consisted of three main treatments, aimed the soil physics conditioning and the incorporation of lime: PD - No-no-tillage; CM - minimum no-tillage, and PC - conventional no-tillage; and of two secondary treatments related to the management: rotation and crop succession, with four replications. Data on agronomic traits of maize were analyzed: plant height, stem diameter, height of the first spike insertion, 100 grains weight and grain yield. The results showed that the maize produced under the system of crop-livestock integration is quite feasible, showing that grain yields are comparable to averages in the region and the different soil physical conditioning and incorporation of lime did not influence the corn yield as well as the cultural managements, rotation and succession, did not affect the maize crop behavior after two years of cultivation.
Resumo:
Agricultural management systems can alter the physical and biological soil quality, interfering with crop development. The objective of this study was to evaluate the physical and microbiological attributes of a Red Latosol, and its relationship to the biometric parameters of the common bean (Phaseolus vulgaris), irrigated and grown under two management systems (conventional tillage and direct seeding), in Campinas in the state of Sao Paulo, Brazil. The experimental design was of randomised blocks, with a split-plot arrangement for the management system and soil depth, analysed during the 2006/7 and 2007/8 harvest seasons, with 4 replications. The soil physical and microbiological attributes were evaluated at depths of 0.00-0.05, 0.05-0.10, 0.10-0.20 and 0.20-0.40 m. The following were determined for the crop: density, number of pods per plant, number of beans per pod, thousand seed weight, total weight of the shoots and harvest index. Direct seeding resulted in a lower soil physical quality at a depth of 0.00-0.05 m compared to conventional tillage, while the opposite occurred at a depth of 0.05-0.10 m. The direct seeding showed higher soil biological quality, mainly indicated by the microbial biomass nitrogen, basal respiration and metabolic quotient. The biometric parameters in the bean were higher under the direct seeding compared to conventional tillage.
Resumo:
Background: Sugarcane cultivation plays an important role in Brazilian economy, and it is expanding fast, mainly due to the increasing demand for ethanol production. In order to understand the impact of sugarcane cultivation and management, we studied sugarcane under different management regimes (pre-harvest burn and mechanical, unburnt harvest, or green cane), next to a control treatment with native vegetation. The soil bacterial community structure (including an evaluation of the diversity of the ammonia oxidizing (amoA) and denitrifying (nirK) genes), greenhouse gas flow and several soil physicochemical properties were evaluated. Results: Our results indicate that sugarcane cultivation in this region resulted in changes in several soil properties. Moreover, such changes are reflected in the soil microbiota. No significant influence of soil management on greenhouse gas fluxes was found. However, we did find a relationship between the biological changes and the dynamics of soil nutrients. In particular, the burnt cane and green cane treatments had distinct modifications. There were significant differences in the structure of the total bacterial, the ammonia oxidizing and the denitrifying bacterial communities, being that these groups responded differently to the changes in the soil. A combination of physical and chemical factors was correlated to the changes in the structures of the total bacterial communities of the soil. The changes in the structures of the functional groups follow a different pattern than the physicochemical variables. The latter might indicate a strong influence of interactions among different bacterial groups in the N cycle, emphasizing the importance of biological factors in the structuring of these communities. Conclusion: Sugarcane land use significantly impacted the structure of total selected soil bacterial communities and ammonia oxidizing and denitrifier gene diversities in a Cerrado field site in Central Brazil. A high impact of land use was observed in soil under the common burnt cane management. The green cane soil also presented different profiles compared to the control soil, but to at a lesser degree.
Resumo:
The relation between the intercepted light and orchard productivity was considered linear, although this dependence seems to be more subordinate to planting system rather than light intensity. At whole plant level not always the increase of irradiance determines productivity improvement. One of the reasons can be the plant intrinsic un-efficiency in using energy. Generally in full light only the 5 – 10% of the total incoming energy is allocated to net photosynthesis. Therefore preserving or improving this efficiency becomes pivotal for scientist and fruit growers. Even tough a conspicuous energy amount is reflected or transmitted, plants can not avoid to absorb photons in excess. The chlorophyll over-excitation promotes the reactive species production increasing the photoinhibition risks. The dangerous consequences of photoinhibition forced plants to evolve a complex and multilevel machine able to dissipate the energy excess quenching heat (Non Photochemical Quenching), moving electrons (water-water cycle , cyclic transport around PSI, glutathione-ascorbate cycle and photorespiration) and scavenging the generated reactive species. The price plants must pay for this equipment is the use of CO2 and reducing power with a consequent decrease of the photosynthetic efficiency, both because some photons are not used for carboxylation and an effective CO2 and reducing power loss occurs. Net photosynthesis increases with light until the saturation point, additional PPFD doesn’t improve carboxylation but it rises the efficiency of the alternative pathways in energy dissipation but also ROS production and photoinhibition risks. The wide photo-protective apparatus, although is not able to cope with the excessive incoming energy, therefore photodamage occurs. Each event increasing the photon pressure and/or decreasing the efficiency of the described photo-protective mechanisms (i.e. thermal stress, water and nutritional deficiency) can emphasize the photoinhibition. Likely in nature a small amount of not damaged photosystems is found because of the effective, efficient and energy consuming recovery system. Since the damaged PSII is quickly repaired with energy expense, it would be interesting to investigate how much PSII recovery costs to plant productivity. This PhD. dissertation purposes to improve the knowledge about the several strategies accomplished for managing the incoming energy and the light excess implication on photo-damage in peach. The thesis is organized in three scientific units. In the first section a new rapid, non-intrusive, whole tissue and universal technique for functional PSII determination was implemented and validated on different kinds of plants as C3 and C4 species, woody and herbaceous plants, wild type and Chlorophyll b-less mutant and monocot and dicot plants. In the second unit, using a “singular” experimental orchard named “Asymmetric orchard”, the relation between light environment and photosynthetic performance, water use and photoinhibition was investigated in peach at whole plant level, furthermore the effect of photon pressure variation on energy management was considered on single leaf. In the third section the quenching analysis method suggested by Kornyeyev and Hendrickson (2007) was validate on peach. Afterwards it was applied in the field where the influence of moderate light and water reduction on peach photosynthetic performances, water requirements, energy management and photoinhibition was studied. Using solar energy as fuel for life plant is intrinsically suicidal since the high constant photodamage risk. This dissertation would try to highlight the complex relation existing between plant, in particular peach, and light analysing the principal strategies plants developed to manage the incoming light for deriving the maximal benefits as possible minimizing the risks. In the first instance the new method proposed for functional PSII determination based on P700 redox kinetics seems to be a valid, non intrusive, universal and field-applicable technique, even because it is able to measure in deep the whole leaf tissue rather than the first leaf layers as fluorescence. Fluorescence Fv/Fm parameter gives a good estimate of functional PSII but only when data obtained by ad-axial and ab-axial leaf surface are averaged. In addition to this method the energy quenching analysis proposed by Kornyeyev and Hendrickson (2007), combined with the photosynthesis model proposed by von Caemmerer (2000) is a forceful tool to analyse and study, even in the field, the relation between plant and environmental factors such as water, temperature but first of all light. “Asymmetric” training system is a good way to study light energy, photosynthetic performance and water use relations in the field. At whole plant level net carboxylation increases with PPFD reaching a saturating point. Light excess rather than improve photosynthesis may emphasize water and thermal stress leading to stomatal limitation. Furthermore too much light does not promote net carboxylation improvement but PSII damage, in fact in the most light exposed plants about 50-60% of the total PSII is inactivated. At single leaf level, net carboxylation increases till saturation point (1000 – 1200 μmolm-2s-1) and light excess is dissipated by non photochemical quenching and non net carboxylative transports. The latter follows a quite similar pattern of Pn/PPFD curve reaching the saturation point at almost the same photon flux density. At middle-low irradiance NPQ seems to be lumen pH limited because the incoming photon pressure is not enough to generate the optimum lumen pH for violaxanthin de-epoxidase (VDE) full activation. Peach leaves try to cope with the light excess increasing the non net carboxylative transports. While PPFD rises the xanthophyll cycle is more and more activated and the rate of non net carboxylative transports is reduced. Some of these alternative transports, such as the water-water cycle, the cyclic transport around the PSI and the glutathione-ascorbate cycle are able to generate additional H+ in lumen in order to support the VDE activation when light can be limiting. Moreover the alternative transports seems to be involved as an important dissipative way when high temperature and sub-optimal conductance emphasize the photoinhibition risks. In peach, a moderate water and light reduction does not determine net carboxylation decrease but, diminishing the incoming light and the environmental evapo-transpiration request, stomatal conductance decreases, improving water use efficiency. Therefore lowering light intensity till not limiting levels, water could be saved not compromising net photosynthesis. The quenching analysis is able to partition absorbed energy in the several utilization, photoprotection and photo-oxidation pathways. When recovery is permitted only few PSII remained un-repaired, although more net PSII damage is recorded in plants placed in full light. Even in this experiment, in over saturating light the main dissipation pathway is the non photochemical quenching; at middle-low irradiance it seems to be pH limited and other transports, such as photorespiration and alternative transports, are used to support photoprotection and to contribute for creating the optimal trans-thylakoidal ΔpH for violaxanthin de-epoxidase. These alternative pathways become the main quenching mechanisms at very low light environment. Another aspect pointed out by this study is the role of NPQ as dissipative pathway when conductance becomes severely limiting. The evidence that in nature a small amount of damaged PSII is seen indicates the presence of an effective and efficient recovery mechanism that masks the real photodamage occurring during the day. At single leaf level, when repair is not allowed leaves in full light are two fold more photoinhibited than the shaded ones. Therefore light in excess of the photosynthetic optima does not promote net carboxylation but increases water loss and PSII damage. The more is photoinhibition the more must be the photosystems to be repaired and consequently the energy and dry matter to allocate in this essential activity. Since above the saturation point net photosynthesis is constant while photoinhibition increases it would be interesting to investigate how photodamage costs in terms of tree productivity. An other aspect of pivotal importance to be further widened is the combined influence of light and other environmental parameters, like water status, temperature and nutrition on peach light, water and phtosyntate management.
Resumo:
Hybrid vehicles represent the future for automakers, since they allow to improve the fuel economy and to reduce the pollutant emissions. A key component of the hybrid powertrain is the Energy Storage System, that determines the ability of the vehicle to store and reuse energy. Though electrified Energy Storage Systems (ESS), based on batteries and ultracapacitors, are a proven technology, Alternative Energy Storage Systems (AESS), based on mechanical, hydraulic and pneumatic devices, are gaining interest because they give the possibility of realizing low-cost mild-hybrid vehicles. Currently, most literature of design methodologies focuses on electric ESS, which are not suitable for AESS design. In this contest, The Ohio State University has developed an Alternative Energy Storage System design methodology. This work focuses on the development of driving cycle analysis methodology that is a key component of Alternative Energy Storage System design procedure. The proposed methodology is based on a statistical approach to analyzing driving schedules that represent the vehicle typical use. Driving data are broken up into power events sequence, namely traction and braking events, and for each of them, energy-related and dynamic metrics are calculated. By means of a clustering process and statistical synthesis methods, statistically-relevant metrics are determined. These metrics define cycle representative braking events. By using these events as inputs for the Alternative Energy Storage System design methodology, different system designs are obtained. Each of them is characterized by attributes, namely system volume and weight. In the last part the work, the designs are evaluated in simulation by introducing and calculating a metric related to the energy conversion efficiency. Finally, the designs are compared accounting for attributes and efficiency values. In order to automate the driving data extraction and synthesis process, a specific script Matlab based has been developed. Results show that the driving cycle analysis methodology, based on the statistical approach, allows to extract and synthesize cycle representative data. The designs based on cycle statistically-relevant metrics are properly sized and have satisfying efficiency values with respect to the expectations. An exception is the design based on the cycle worst-case scenario, corresponding to same approach adopted by the conventional electric ESS design methodologies. In this case, a heavy system with poor efficiency is produced. The proposed new methodology seems to be a valid and consistent support for Alternative Energy Storage System design.
Resumo:
L’obiettivo di questa tesi è approfondire le competenze sulle funzionalità sviluppate nei sistemi SCADA/EMS presenti sul mercato, così da conoscerne le potenzialità offerte: tutte le conoscenze acquisite servono a progettare uno strumento di analisi dati flessibile e interattivo, con il quale è possibile svolgere analisi non proponibili con le altre soluzioni analizzate. La progettazione dello strumento di analisi dei dati è orientata a definire un modello multidimensionale per la rappresentazione delle informazioni: il percorso di progettazione richiede di individuare le informazioni d’interesse per l’utente, così da poterle reintrodurre in fase di progettazione della nuova base dati. L’infrastruttura finale di questa nuova funzionalità si concretizza in un data warehouse: tutte le informazioni di analisi sono memorizzare su una base dati diversa da quella di On.Energy, evitando di correlare le prestazione dei due diversi sottosistemi. L’utilizzo di un data warehouse pone le basi per realizzare analisi su lunghi periodi temporali: tutte le tipologie di interrogazione dati comprendono un enorme quantità d’informazioni, esattamente in linea con le caratteristiche delle interrogazioni OLAP
Resumo:
Questo elaborato di tesi è nato con l'esigenza di sviluppare un nuovo modulo per la stima di variabili energetiche da inserire nel software On.Energy, per dare la possibilità a tutti gli utilizzatori di capire quanto i valori osservati nella realtà si discostino da un modello teorico appositamente creato, e fornire quindi un ulteriore strumento di analisi per mantenere sotto controllo il sistema nell'ottica del miglioramento continuo. Il risultato sarà uno strumento che verrà provato in via sperimentale sugli stabilimenti di due aziende leader in Italia in settori produttivi largamente differenti (Amadori - alimentare, Pfizer - farmaceutico), ma accomunati dalle esigenze di monitorare, analizzare e efficientare i consumi energetici.
Resumo:
This thesis develops an effective modeling and simulation procedure for a specific thermal energy storage system commonly used and recommended for various applications (such as an auxiliary energy storage system for solar heating based Rankine cycle power plant). This thermal energy storage system transfers heat from a hot fluid (termed as heat transfer fluid - HTF) flowing in a tube to the surrounding phase change material (PCM). Through unsteady melting or freezing process, the PCM absorbs or releases thermal energy in the form of latent heat. Both scientific and engineering information is obtained by the proposed first-principle based modeling and simulation procedure. On the scientific side, the approach accurately tracks the moving melt-front (modeled as a sharp liquid-solid interface) and provides all necessary information about the time-varying heat-flow rates, temperature profiles, stored thermal energy, etc. On the engineering side, the proposed approach is unique in its ability to accurately solve – both individually and collectively – all the conjugate unsteady heat transfer problems for each of the components of the thermal storage system. This yields critical system level information on the various time-varying effectiveness and efficiency parameters for the thermal storage system.
Resumo:
This thesis studies the minimization of the fuel consumption for a Hybrid Electric Vehicle (HEV) using Model Predictive Control (MPC). The presented MPC – based controller calculates an optimal sequence of control inputs to a hybrid vehicle using the measured plant outputs, the current dynamic states, a system model, system constraints, and an optimization cost function. The MPC controller is developed using Matlab MPC control toolbox. To evaluate the performance of the presented controller, a power-split hybrid vehicle, 2004 Toyota Prius, is selected. The vehicle uses a planetary gear set to combine three power components, an engine, a motor, and a generator, and transfer energy from these components to the vehicle wheels. The planetary gear model is developed based on the Willis’s formula. The dynamic models of the engine, the motor, and the generator, are derived based on their dynamics at the planetary gear. The MPC controller for HEV energy management is validated in the MATLAB/Simulink environment. Both the step response performance (a 0 – 60 mph step input) and the driving cycle tracking performance are evaluated. Two standard driving cycles, Urban Dynamometer Driving Schedule (UDDS) and Highway Fuel Economy Driving Schedule (HWFET), are used in the evaluation tests. For the UDDS and HWFET driving cycles, the simulation results, the fuel consumption and the battery state of charge, using the MPC controller are compared with the simulation results using the original vehicle model in Autonomie. The MPC approach shows the feasibility to improve vehicle performance and minimize fuel consumption.