975 resultados para Interleukin 8
Resumo:
BACKGROUND CONTEXT In canine intervertebral disc (IVD) disease, a useful animal model, only little is known about the inflammatory response in the epidural space. PURPOSE To determine messenger RNA (mRNA) expressions of selected cytokines, chemokines, and matrix metalloproteinases (MMPs) qualitatively and semiquantitatively over the course of the disease and to correlate results to neurologic status and outcome. STUDY DESIGN/SETTING Prospective study using extruded IVD material of dogs with thoracolumbar IVD extrusion. PATIENT SAMPLE Seventy affected and 13 control (24 samples) dogs. OUTCOME MEASURES Duration of neurologic signs, pretreatment, neurologic grade, severity of pain, and outcome were recorded. After diagnostic imaging, decompressive surgery was performed. METHODS Messenger RNA expressions of interleukin (IL)-1β, IL-2, IL-4, IL-6, IL-8, IL-10, tumor necrosis factor (TNF), interferon (IFN)γ, MMP-2, MMP-9, chemokine ligand (CCL)2, CCL3, and three housekeeping genes was determined in the collected epidural material by Panomics 2.0 QuantiGene Plex technology. Relative mRNA expression and fold changes were calculated. Relative mRNA expression was correlated statistically to clinical parameters. RESULTS Fold changes of TNF, IL-1β, IL-2, IL-4, IL-6, IL-10, IFNγ, and CCL3 were clearly downregulated in all stages of the disease. MMP-9 was downregulated in the acute stage and upregulated in the subacute and chronic phase. Interleukin-8 was upregulated in acute cases. MMP-2 showed mild and CCL2 strong upregulation over the whole course of the disease. In dogs with severe pain, CCL3 and IFNγ were significantly higher compared with dogs without pain (p=.017/.020). Dogs pretreated with nonsteroidal anti-inflammatory drugs revealed significantly lower mRNA expression of IL-8 (p=.017). CONCLUSIONS The high CCL2 levels and upregulated MMPs combined with downregulated T-cell cytokines and suppressed pro-inflammatory genes in extruded canine disc material indicate that the epidural reaction is dominated by infiltrating monocytes differentiating into macrophages with tissue remodeling functions. These results will help to understand the pathogenic processes representing the basis for novel therapeutic approaches. The canine IVD disease model will be rewarding in this process.
Resumo:
BACKGROUND Vascular Ehlers-Danlos syndrome (VEDS) causes reduced life expectancy because of arterial dissections/rupture and hollow organ rupture. Although the causative gene, COL3A1, was identified >20 years ago, there has been limited progress in understanding the disease mechanisms or identifying treatments. METHODS AND RESULTS We studied inflammatory and transforming growth factor-β (TGF-β) signaling biomarkers in plasma and from dermal fibroblasts from patients with VEDS. Analyses were done in terms of clinical disease severity, genotype-phenotype correlations, and body composition and fat deposition alterations. VEDS subjects had increased circulating TGF-β1, TGF-β2, monocyte chemotactic protein-1, C-reactive protein, intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and leptin and decreased interleukin-8 versus controls. VEDS dermal fibroblasts secreted more TGF-β2, whereas downstream canonical/noncanonical TGF-β signaling was not different. Patients with COL3A1 exon skipping mutations had higher plasma intercellular adhesion molecule-1 and vascular cell adhesion molecule-1, and VEDS probands had abnormally high plasma C-reactive protein versus affected patients identified through family members before any disease manifestations. Patients with VEDS had higher mean platelet volumes, suggesting increased platelet turnover because of ongoing vascular damage, as well as increased regional truncal adiposity. CONCLUSIONS These findings suggest that VEDS is a systemic disease with a major inflammatory component. C-reactive protein is linked to disease state and may be a disease activity marker. No changes in downstream TGF-β signaling and increased platelet turnover suggest that chronic vascular damage may partially explain increased plasma TGF-β1. Finally, we found a novel role for dysregulated TGF-β2, as well as adipocyte dysfunction, as demonstrated through reduced interleukin-8 and elevated leptin in VEDS.
Resumo:
BACKGROUND Distinct populations of neutrophils have been identified based on the expression of intercellular adhesion molecule 1 (ICAM1, CD54) and chemokine receptor 1 (CXCR1, interleukin 8 receptor α). AIM We analyzed the expression of vascular endothelial growth factor receptor 1 (VEGFR1), a physiological negative regulator of angiogenesis, on distinct populations of neutrophils from the blood of patients before and after adjuvant chemotherapy for breast cancer. MATERIALS AND METHODS Neutrophil populations were distinguished as reverse transmigrated (ICAM1(high)/CXCR1(low)), naïve (ICAM1(low)/CXCR1(high)), or tissue-resident neutrophils (ICAM1(low)/CXCR1(low)), and their VEGFR1 expression quantified. RESULTS Reverse transmigrated ICAM1(high)/CXCR1(low) neutrophilic granulocytes decreased significantly after chemotherapy and these were also the cells with highest mean fluorescence intensity for VEGFR1. CONCLUSION Chemotherapy mainly reduces the number of reverse transmigrated long-lived ICAM1(high)/CXCR1(low) VEGFR1-expressing neutrophils. The decrease of antiangiogenic VEGFR1 may have a potential impact on tumour angiogenesis in patients undergoing adjuvant chemotherapy.
Resumo:
Prostaglandins such as prostaglandin E2 (PGE2) play a pivotal role in physiological and pathophysiological pathways in gastric mucosa. Little is known about the interrelation of the prostaglandin E (EP) receptors with the prostaglandin transporter OATP2A1 in the gastric mucosa and gastric carcinoma. Therefore, we first investigated the expression of OATP2A1 and EP4 in normal and carcinoma gastric mucosa. Different PGE2-mediated cellular pathways and mechanisms were investigated using human embryonic kidney cells (HEK293) and the human gastric carcinoma cell line AGS stably transfected with OATP2A1. Colocalization and expression of OATP2A1 and EP4 were detected in mucosa of normal gastric tissue and of gastric carcinomas. OATP2A1 reduced the PGE2-mediated cAMP production in HEK293 and AGS cells overexpressing EP4 and OATP2A1. The expression of OATP2A1 in AGS cells resulted in a reduction of [(3)H]-thymidine incorporation which was in line with a higher accumulation of AGS-OATP2A1 cells in S-phase of the cell cycle compared to control cells. In contrast, the expression of OATP2A1 in HEK293 cells had no influence on the distribution in the S-phase compared to control cells. OATP2A1 also diminished the PGE2-mediated expression of interleukin-8 mRNA (IL-8) and hypoxia-inducible-factor 1α (HIF1α) protein in AGS-OATP2A1 cells. The expression of OATP2A1 increased the sensitivity of AGS cells against irinotecan which led to reduced cell viability. Taken together, these data show that OATP2A1 influences PGE2-mediated cellular pathways. Therefore, OATP2A1 needs to be considered as a key determinant for the understanding of the physiology and pathophysiology of prostaglandins in healthy and tumorous gastric mucosa.
Resumo:
The progressive growth of epithelial ovarian cancer tumor is regulated by proangiogenic molecules and growth factors released by tumor cells and the microenvironment. Previous studies showed that the expression of interleukin-8 (IL-8) directly correlates with the progression of human ovarian carcinomas implanted into the peritoneal cavity of nude mice. We examined the expression level of IL-8 in archival specimens of primary human ovarian carcinoma from patients undergoing curative surgery by in situ mRNA hybridization technique. The expression of IL-8 was significantly higher in patients with stage III disease than in patients with stage I disease. To investigate the role of IL-8 in the progressive growth of ovarian cancer, we isolated high- and low-IL-8 producing clones from parental Hey-A8 human ovarian cancer cells, and compared their proliferative activity and tumorigenicity in nude mice. The effect of exogenous IL-8 and IL-8 neutralizing antibody on ovarian cancer cell proliferation was investigated. Finally, we studied the modulation of IL-8 expression in ovarian cancer cells by sense and antisense IL-8 expression vector transfection and its effect on proliferation and tumorigenicity. We concluded that IL-8 has a direct growth potentiating activity in human ovarian cancer cells. ^ The expression level of IL-8 directly correlates with disease progression of human ovarian cancer, but the mechanism of induction is unknown. Since hypoxia and acidic pH are common features in solid tumors, we determined whether hypoxic and acidic conditions could regulate the expression of IL-8. Culturing the human ovarian cancer cells in hypoxic or acidic medium led to a significant increase in IL-8 mRNA and protein. Hypoxic- and acidosis-mediated transient increase in IL-8 expression involved both transcriptional activation of the IL-8 gene and enhanced stability of the IL-8 mRNA. Furthermore, we showed that IL-8 transcription activation by hypoxia or acidosis required the cooperation of NF-κB and AP-1 binding sites. ^ Finally, we studied novel therapies against human ovarian cancer. First, we determined whether inhibition of the catalytic tyrosine kinase activity of the receptors for vascular endothelial growth factor/vascular permeability factor (VEGF/VPF) inhibits the formation of malignant ascites and the progressive growth of human ovarian carcinoma cells implanted into the peritoneal cavity of nude mice. Our results suggest that blockade of the VEGF/VPF receptor may be an efficient strategy to inhibit formation of malignant ascites and growth of VEGF/VPF-dependent human ovarian carcinomas. Secondly, we determined whether local sustained production of murine interferon-β could inhibit the growth of human ovarian cancer cells in the peritoneal cavity of nude mice. Our results showed that local production of IFN-β could inhibit the in vivo growth of human ovarian cancer cells by upregulating the expression of the inducible nitric oxide synthase (NOS) in host macrophages. ^
Resumo:
An abundance of monocytes and macrophages (MO/MA) in the microenvironment of epithelial ovarian cancer (EOC) suggests possible dual roles for these cells. Certain MO/MA subpopulations may inhibit tumor growth by antibody-dependent cell-mediated cytotoxicity (ADCC), phagocytosis, or stimulation of adaptive immunity. In contrast, other MO/MA subpopulations may support tumor growth by immunosuppressive or pro-angiogenic cytokine production. A better understanding of the phenotype and activity of MO/MA in EOC should lead to greater insight into their role in the immunopathobiology of EOC and hence suggest targets for treatment. We have found differences in the proportions of MO/MA subpopulations in the peripheral blood and ascites of EOC patients compared to normal donors, and differences in MO/MA surface phenotype in the associated tumor environment compared to the systemic circulation. We also demonstrate that, following their activation in vitro, monocyte-derived macrophages (MDM) from the peripheral blood and ascites of EOC patients exhibit antitumor effector activities that are different from the behavior of normal donor cells. The phenotypic characteristics and antitumor activity of CD14+ MO/MA and an isolated subpopulation of CD14brightCD16 −HLA-DR+ MO/MA were compared in samples of normal donor peripheral blood and the peripheral blood and ascites from EOC patients. MDM were cultured with macrophage colony-stimulating factor (M-CSF) and activated with lipopolysaccharide (LPS) or a combination of LPS plus recombinant interferon-gamma. We determined that MO/MA from EOC patients had altered morphology and significantly less ADCC and phagocytic activity than did MO/MA from normal donors. ADCC and phagocytosis are mediated by receptors for the Fe portion of IgG (FcγRs), the expression of which were also found to be deficient on EOC MDM from peripheral blood and ascites. Anti-tumor functions not mediated by the FcγRs, such as macrophage mediated cytotoxicity and cytostasis, were not impaired in EOC MDM compared to normal donor MDM. Our findings also showed that MDM from both EOC patients and normal donors produce M-CSF-stimulated cytokines, including interleukin-8, tumor necrosis factor alpha, and interleukin-6, which have the potential to support ovarian tumor growth and metastasis. These findings may be relevant to the pathogenesis of EOC and to the development of future bioimmunotherapeutic strategies. ^
Resumo:
BACKGROUND: Pru p 3 is the major peach allergen and the most frequent cause of food allergy in adults in the Mediterranean area. Although its allergenicity is well characterized, its ability to generate a T-cell response is not completely known. OBJECTIVE: To investigate the influence of Pru p 3 allergen on dendritic cell (DC) maturation and specific T-cell response (T(H)1/T(H)2) in peach allergic patients. METHODS: Peach allergic patients (n = 11) and tolerant controls (n = 14) were included in the study. Monocyte-derived DC maturation after incubation with Pru p 3 was evaluated by the increase of maturational markers (CD80, CD86, and CD83) by flow cytometry. Lymphocyte proliferation was evaluated by coculturing monocyte-derived DCs and 5,6-carboxyfluorescein diacetate N-succinimidyl ester-stained lymphocytes with different concentrations of Pru p 3 (25, 10, and 1 ?g/mL) by flow cytometry and cytokine production. RESULTS: Pru p 3 induced a significant increase in the CD80, CD86, and CD83 expression on stimulated DCs from patients compared with controls. The lymphocyte proliferative response after Pru p 3 stimulation was also significantly higher along with an increase in interleukin 8 in patients compared with tolerant controls. CONCLUSION: Pru p 3 allergen induces changes in DC maturational status mainly in peach allergic patients. An increase in lymphocyte proliferative response accompanied with a different cytokine pattern was also observed compared with healthy controls.
Resumo:
Adherence of Helicobacter pylori to cultured gastric epithelial cells is associated with several cellular events, including the tyrosine phosphorylation of a 145-kDa host protein; the reorganization of the host cell actin and associated cellular proteins, like vasodilator-stimulated phosphoprotein, adjacent to the attached bacterial cell; and the subsequent release of the cytokine, interleukin 8 (IL-8). H. pylori isolated from patients with ulcer disease and gastric cancer contain a DNA insertion, the cag pathogenicity island (PAI), that is not present in bacteria isolated from individuals with asymptomatic infection. Mutations in a number of PAI genes abolish tyrosine phosphorylation and IL-8 synthesis but not the cytoskeletal rearrangements. Kinase inhibition studies suggest there are two distinct pathways operative in stimulating IL-8 release from host cells and one of these H. pylori pathways is independent of the tyrosine phosphorylation step.
Resumo:
The biological activity of the transcription factor NF-κB is mainly controlled by the IκB proteins IκBα and IκBβ, which restrict NF-κB in the cytoplasm and enter the nucleus where they terminate NF-κB-dependent transcription. In this paper we describe the cloning and functional characterization of mouse IκBɛ. Mouse IκBɛ contains 6 ankyrin repeats required for its interaction with the Rel proteins and is expressed in different cell types where we found that it is up-regulated by NF-κB inducers, as is the case for IκBα and human IκBɛ. IκBɛ functions as a bona fide IκB protein by restricting Rel proteins in the cytoplasm and inhibiting their in vitro DNA binding activity. Surprisingly, IκBɛ did not inhibit transcription of genes regulated by the p50/p65 heterodimer efficiently, such as the human interferon-β gene. However, IκBɛ was a strong inhibitor of interleukin-8 expression, a gene known to be regulated by p65 homodimers. In addition, IκBɛ appears to function predominantly in the cytoplasm to sequester p65 homodimers, in contrast with the other two members of the family, IκBα and IκBβ, which also function in the nucleus to terminate NF-κB-dependent transcriptional activation.
Resumo:
Many chemoattractants cause chemotaxis of leukocytes by stimulating a structurally distinct class of G protein-coupled receptors. To identify receptor functions required for chemotaxis, we studied chemotaxis in HEK293 cells transfected with receptors for nonchemokine ligands or for interleukin 8 (IL-8), a classical chemokine. In gradients of the appropriate agonist, three nonchemokine Gi-coupled receptors (the D2 dopamine receptor and opioid μ and δ receptors) mediated chemotaxis; the β2-adrenoreceptor and the M3-muscarinic receptor, which couple respectively to Gs and Gq, did not mediate chemotaxis. A mutation deleting 31 C-terminal amino acids from the IL-8 receptor type B quantitatively impaired chemotaxis and agonist-induced receptor internalization, but not inhibition of adenylyl cyclase or stimulation of mitogen-activated protein kinase. To probe the possible relation between receptor internalization and chemotaxis, we used two agonists of the μ-opioid receptor. Morphine and etorphine elicited quantitatively similar chemotaxis, but only etorphine induced receptor internalization. Overexpression of two βγ sequestering proteins (βARK-ct and αt) prevented IL-8 receptor type B-mediated chemotaxis but did not affect inhibition of adenylyl cyclase by IL-8. We conclude that: (i) Nonchemokine Gi-coupled receptors can mediate chemotaxis. (ii) Gi activation is necessary but probably not sufficient for chemotaxis. (iii) Chemotaxis does not require receptor internalization. (iv) Chemotaxis requires the release of free βγ subunits.
Resumo:
The genome of the Kaposi sarcoma-associated herpesvirus (KSHV or HHV8) was mapped with cosmid and phage genomic libraries from the BC-1 cell line. Its nucleotide sequence was determined except for a 3-kb region at the right end of the genome that was refractory to cloning. The BC-1 KSHV genome consists of a 140.5-kb-long unique coding region flanked by multiple G+C-rich 801-bp terminal repeat sequences. A genomic duplication that apparently arose in the parental tumor is present in this cell culture-derived strain. At least 81 ORFs, including 66 with homology to herpesvirus saimiri ORFs, and 5 internal repeat regions are present in the long unique region. The virus encodes homologs to complement-binding proteins, three cytokines (two macrophage inflammatory proteins and interleukin 6), dihydrofolate reductase, bcl-2, interferon regulatory factors, interleukin 8 receptor, neural cell adhesion molecule-like adhesin, and a D-type cyclin, as well as viral structural and metabolic proteins. Terminal repeat analysis of virus DNA from a KS lesion suggests a monoclonal expansion of KSHV in the KS tumor.
Resumo:
Glycosylation-inhibiting factor (GIF) is a cytokine that is involved in the regulation of IgE synthesis. The crystal structure of recombinant human GIF was determined by the multiple isomorphous replacement method. The structure was refined to an R factor of 0.168 at 1.9 angstrom resolution. The overall structure is seen to consist of three interconnected subunits forming a barrel with three 6-stranded beta-sheets on the inside and six alpha-helices on the outside. There is a 5-angstrom-diameter "hole" through the middle of the barrel. The barrel structure of GIF in part resembles other "trefoil" cytokines such as interleukin 1 and fibroblast growth factor. Each subunit has a new class of alpha + beta sandwich structure consisting of two beta-alpha-beta motifs. These beta-alpha-beta motifs are related by a pseudo-twofold axis and resemble both interleukin 8 and the peptide binding domain of major histocompatibility complex protein, although the topology of the polypeptide chain is quite different.
Resumo:
Inflammation is a primary pathological process. The development of an inflammatory reaction involves the movement of white blood cells through the endothelial lining of blood vessels into tissues. This process of transendothelial cell migration of neutrophils has been shown to involve neutrophil beta 2 integrins (CD18) and endothelial cell platelet-endothelium cell adhesion molecules (PECAM-1; CD31). We now show that F(ab')2 fragments of the monoclonal antibody B6H12 against integrin-associated protein (IAP) blocks the transendothelial migration of neutrophils stimulated by an exogenous gradient of the chemokine interleukin 8 (IL-8; 60% inhibition), by the chemotactic peptide N-formyl-methionylleucylphenylalanine (FMLP; 76% inhibition), or by the activation of the endothelium by the cytokine tumor necrosis factor alpha (98% inhibition). The antibody has two mechanisms of action: on neutrophils it prevents the chemotactic response to IL-8 and FMLP, and on endothelium it prevents an unknown but IL-8-independent process. Blocking antibodies to IAP do not alter the expression of adhesion proteins or production of IL-8 by endothelial cells, and thus the inhibition of neutrophil transendothelial migration is selective. These data implicate IAP as the third molecule essential for neutrophil migration through endothelium into sites of inflammation.
Resumo:
A síndrome de Sjögren primária (SSp) é uma doença crônica autoimune sistêmica que pode levar à hipossalivação e afetar negativamente o ambiente oral. Os objetivos deste estudo foram detectar a influência da SSp nos níveis de biomarcadores inflamatórios na saliva e no fluido gengival nas amostras de pacientes com periodontite crônica, avaliar o efeito do tratamento periodontal não cirúrgico sobre os valores do índice clínico de avaliação da atividade sistêmica de pacientes com SSp e do índice reportado pelo paciente com SSp. Amostras de fluido gengival, saliva e os parâmetros clínicos periodontais que consistiram de medida da profundidade de sondagem (PS), nível clínico de inserção (NCI), sangramento à sondagem (SS) e índice de placa (IP) foram coletadas no início do estudo e 45 dias após a terapia periodontal não-cirúrgica de pacientes sistemicamente saudáveis com periodontite crônica (PC, n = 7) e pacientes com SSp e periodontite crônica (SP, n = 7). Pacientes periodontalmente saudáveis com SSp (SC, n = 7) e sistemicamente saudáveis (C, n = 7) também foram avaliados no início do estudo. Os grupos C, PC e SC foram pareados em gênero, idade e critério socioeconômico com o grupo SP. Os níveis de interleucina-8 (IL-8), IL-10 e IL-1ß foram avaliados por ensaio multiplex. Os níveis de atividade da doença foram medidos usando o Gold Standard da literatura chamado Índice Eular de atividade da síndrome de Sjögren (ESSDAI). Já para avaliação dos sintomas reportados pelo paciente com SSp foi utilizado o Índice Eular reportado pelo paciente com Sjögren (ESSPRI). Os parâmetros clínicos melhoraram após a terapia periodontal (p <0,05). No entanto, o NCI em pacientes com SSp não melhorou significativamente após a terapia (p> 0,05). Houve um aumento nos níveis de IL-1ß, IL-8 e diminuição dos níveis de IL-10 nas amostras de saliva de pacientes do grupo SC em comparação ao grupo C (p <0,05). Já em relação ao fluido gengival, pacientes do grupo SC tiveram maiores níveis de IL-1ß em comparação com o grupo C (p<0,05). Além disso, o tratamento periodontal não cirúrgico resultou num aumento dos níveis de IL-10 no fluido gengival no grupo SP e grupo PC em relação ao valor basal (p <0,05). O fluxo salivar foi significativamente aumentado após o tratamento periodontal apenas em pacientes do grupo SP (p = 0,039). Além disso, o tratamento periodontal não influenciou o índice ESSDAI (p = 0,35) e levou a uma diminuição significativa no índice ESSPRI (p = 0,03). Os presentes dados demonstraram que a SSp influencia os níveis salivares e de fluido gengival de biomarcadores inflamatórios em favor de um perfil próinflamatório, no entanto, este perfil parece não aumentar susceptibilidade dos indivíduos SSp à destruição periodontal. Além disso, os presentes dados demonstraram que o tratamento periodontal não-cirúrgico tem um impacto positivo sobre o fluxo salivar e sobre o índice ESSPRI de pacientes com SSp. Sugere-se assim que o tratamento periodontal pode melhorar a qualidade de vida de indivíduos com SSp.
Resumo:
Objectives: The antiinflammatory effect of macrolide antibiotics has been well-established, as has their role in the treatment of certain disorders of chronic airway inflammation. Several studies have suggested that long-term, low-dose macrolides may be efficacious in the treatment of chronic rhinosinusitis; however, these studies have lacked a control group. To date, this effect has not been tested in a randomized, placebo-controlled study. Method: The authors conducted a double-blind, randomized, placebo-controlled clinical trial on 64 patients with chronic rhinosinusitis. Subjects received either 150 mg roxithromycin daily for 3 months or placebo. Outcome measures included the Sinonasal Outcome Test-20 (SNOT-20), measurements of peak nasal inspiratory flow, saccharine transit time, olfactory function, nasal endoscopic scoring, and nasal lavage assays for interleukin-8, fucose, and a2-macroglobulin. Results. There were statistically significant improvements in SNOT-20 score, nasal endoscopy, saccharine transit time, and IL-8 levels in lavage fluid (P < .05) in the macrolide group. A correlation was noted between improved outcome measures and low IgE levels. No significant improvements were noted for olfactory function, peak nasal inspiratory flow, or lavage levels for fucose and a2-macroglobulin. No improvement in any outcome was noted in the placebo-treated patients. Conclusion: These findings suggest that macrolides may have a beneficial role in the treatment of chronic rhinosinusitis, particularly in patients with low levels of IgE, and supports the in vitro evidence of their antiinflammatory activity. Additional studies are required to assess their place in clinical practice.