938 resultados para Interconnected electric utility systems Queensland
Resumo:
This work is devoted to Study and discuss the main methods to solve the network cost allocation problem both for generators and demands. From the presented, compared and discussed methods, the first one is based on power injections, the second deals with proportional sharing factors, the third is based upon Equivalent Bilateral Exchanges, the fourth analyzes the power How sensitivity in relation to the power injected, and the last one is based on Z(bus) network matrix. All the methods are initially illustrated using a 4-bus system. In addition, the IEEE 24-bus RTS system is presented for further comparisons and analysis. Appropriate conclusions are finally drawn. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
In this paper, is presented an economical and technical feasibility study of a combined cycle cogeneration system proposed to be used in a pulp plant located in Brazil, where around 95% of country's pulp production is done by the use of Kraft Process. This process allows the use of black liquor and other by-products as fuel. This study is based upon actual data from a pulp plant with a daily production of 1000 tons., that generates part of the energy demanded by the process in a conventional cogeneration system with condensing steam turbine and two extractions. The addition of a gas turbine was studied to compare electricity production level and its related costs between original system and the new one, considering that the former can use industrial by-products and firewood as fuel, when required. Several parameters related to electric generation systems operation and production costs were studied. The use of natural gas in the combined cycle, in comparison with the use of firewood in the conventional system was studied. The advantages of natural gas fuel are highlighted. The surplus availability and the electricity generation costs are presented as a function of pulp and black liquor production.
Resumo:
Teaching a course of special electric loads in a continuing education program to power engineers is a difficult task because they are not familiarized with switching topology circuits. Normally, in a typical program, many hours are dedicated to explain the thyristors switching sequence and to draw the converter currents and terminal voltages waveforms for different operative conditions. This work presents teaching support software in order to optimize the time spent in this task and, mainly to benefit the assimilation of the proposed subjects, studying the static converter under different non-ideal operative conditions.
Resumo:
The distribution of short-circuit current is investigated by means of two methods, one direct and the other analytic; both methods consider uniform probability distribution of line faults. In the direct method, the procedure consists of calculating fault currents at equidistant points along the line, starting from one of the end points and considering the other end open. The magnitude of the current is classified according to Brazilian standards (regulation NBR-7118). The analytic method assumes that the distribution of short-circuit currents through the busbar and the distribution of the line length connected to it are known, as well as the independence of values. The method is designed to determine the probability that fault currents through a line will surpass the pre-established magnitude, thus generating frequency distribution curves of short-circuit currents along the lines.
Resumo:
This paper presents a methodology for solving a set of linear sparse equations on vector computers. The new methodology is able to exploit the matrix and vector sparsities. The implementation was made on a CRAY Y-MP 2E/232 computer and the results were taken from electric power systems with 118, 320, 725 and 1729 buses. The proposed methodology was compared with three previous methods and the results show the superior performance of the new one.
Resumo:
This work presents an algorithm for the security control of electric power systems using control actions like generation reallocation, determined by sensitivity analysis (linearized model) and optimization by neural networks. The model is developed taking into account the dynamic network aspects. The preventive control methodology is developed by means of sensitivity analysis of the security margin related with the mechanical power of the system synchronous machines. The reallocation power in each machine is determined using neural networks. The neural network used in this work is of Hopfield type. These networks are dedicated electric circuits which simulate the constraint set and the objective function of an optimization problem. The advantage of using these networks is the higher speed in getting the solutions when compared to conventional optimization algorithms due to the great convergence rate of the process and the facility of the method parallelization. Then, the objectives are: formulate and investigate these networks implementations in determining. The generation reallocation in digital computers. Aiming to illustrate the proposed methodology an application considering a multi-machine system is presented.
Resumo:
Substitution of fuzzy logic control in an electrical system normally controlled by proportional-integral frequency was studied and analyzed. A linear model of an electrical system, the concepts which govern the theory of fuzzy logic, and the application of this theory to systems control, are briefly presented. The methodology of fuzzy logic was then applied to develop a model for an electrical energy system. The results of the simulation demonstrated that fuzzy logic control eliminated the area frequency error and permitted that only the area experiencing an increase in charge responds to this variation. Based on the results, it is concluded that control based on fuzzy logic is simple, is easy to maintain, is of low cost, and can be used to substitute traditional velocity controllers.
Resumo:
A model for preventive control in electrical systems is presented, taking into account the dynamic aspects of the network. Among these aspects, the effects provoked by perturbations which cause oscillations in synchronous machine angles (transient stability), such as electric equipment outages and short circuits, are presented. The energy function is used to measure the stability of the system using a procedure defined as the security margin. The control actions employed are load shedding and generation reallocation. An application of the methodology to a system located in southern Brazil, which is composed of 10 synchronous machines, 45 busses, and 72 transmission lines. The results confirm the theoretical studies.
Resumo:
A combined methodology consisting of successive linear programming (SLP) and a simple genetic algorithm (SGA) solves the reactive planning problem. The problem is divided into operating and planning subproblems; the operating subproblem, which is a nonlinear, ill-conditioned and nonconvex problem, consists of determining the voltage control and the adjustment of reactive sources. The planning subproblem consists of obtaining the optimal reactive source expansion considering operational, economical and physical characteristics of the system. SLP solves the optimal reactive dispatch problem related to real variables, while SGA is used to determine the necessary adjustments of both the binary and discrete variables existing in the modelling problem. Once the set of candidate busbars has been defined, the program implemented gives the location and size of the reactive sources needed, if any, to maintain the operating and security constraints.
Resumo:
This paper presents the Benders decomposition technique and Branch and Bound algorithm used in the reactive power planning in electric energy systems. The Benders decomposition separates the planning problem into two subproblems: an investment subproblem (master) and the operation subproblem (slave), which are solved alternately. The operation subproblem is solved using a successive linear programming (SLP) algorithm while the investment subproblem, which is an integer linear programming (ILP) problem with discrete variables, is resolved using a Branch and Bound algorithm especially developed to resolve this type of problem.
Resumo:
This letter presents an approach for a geometrical solution of an optimal power flow (OPF) problem for a two-bus system (slack and PV busses). The algebraic equations for the calculation of the Lagrange multipliers and for the minimum losses value are obtained. These equations are used to validate the results obtained using an OPF program.
Resumo:
In this paper a hybrid solid oxide fuel cell (SOFC) system is analyzed. This system applies a combined cycle utilizing gas turbine associated to a SOFC for rational decentralized energy production. Initially the relative concepts about the fuel cell are presented, followed by some chemical and technical informations such as the change of Gibbs free energy in isothermal fuel oxidation (or combustion) directly into electricity. This represents a very high fraction of the lower heating value (LHV) of a hydrocarbon fuel. In the next step a methodology for the study of SOFC associated with a gas turbine system is developed, considering the electricity and steam production for a hospital, as regard to the Brazilian conditions. This methodology is applied to energetic analysis. Natural gas is considered as a fuel. In conclusion, it is shown by a Sankey Diagram that the hybrid SOFC system may be an excellent opportunity to strengthen the decentralized energy production in Brazil. It is necessary to consider that the cogeneration in this version also is a sensible alternative from the technical point of view, demanding special methods of design, equipment selection and mainly of the contractual deals associated to electricity and fuel supply.
Resumo:
A novel hybrid high power rectifier capable to achieve unity power factor is proposed in this paper. Single-phase SEPIC rectifiers are associated in parallel with each leg of three-phase 6-pulse diode rectifier resulting in a programmable input current waveform structure. In this paper it is described the principles of operation of the proposed converter with detailed simulation and experimental results. For a total harmonic distortion of the input line current (THDI) less than 2% the rated power of the SEPIC rectifiers is 33%. Therefore, power rating of the SEPIC parallel converters is a fraction of the output power, on the range of 20% to 33% of the nominal output power, making the proposed solution economically viable for high power installations, with fast pay back of the investment. Moreover, retrofits to existing installations are also possible with this proposed topology, since the parallel path can be easily controlled by integration with the already existing de-link. Experimental results are presented for a 3 kW implemented prototype, in order to verify the developed analysis.
Resumo:
In this paper is presented a new approach for optimal power flow problem. This approach is based on the modified barrier function and the primal-dual logarithmic barrier method. A Lagrangian function is associated with the modified problem. The first-order necessary conditions for optimality are fulfilled by Newton's method, and by updating the barrier terms. The effectiveness of the proposed approach has been examined by solving the Brazilian 53-bus, IEEE118-bus and IEEE162-bus systems.
Resumo:
This paper presents an alternative methodology for loading margin improvement and total real power losses reduction by using a continuation method. In order to attain this goal, a parameterizing equation based on the total real power losses and the equations of the reactive power at the slack and generation buses are added to the conventional power flow equations. The voltages at these buses are considered as control variables and a new parameter is chosen to reduce the real power losses in the transmission lines. The results show that this procedure leads to maximum loading point increase and consequently, in static voltage stability margin improvement. Besides, this procedure also takes to a reduction in the operational costs and, simultaneously, to voltage profile improvement. Another important result of this methodology is that the resulting operating points are close to that provided by an optimal power flow program. © 2004 IEEE.