304 resultados para Interception
Resumo:
Four experiments conducted over three seasons (2002-05) at the Crops Research Unit, University of Reading, investigated effects of canopy management of autumn sown oilseed rape (Brassica napus L. ssp. oleifera var. biennis (DC.) Metzg.) on competition with grass weeds. Emphasis was placed on the effect of the crop on the weeds. Rape canopy size was manipulated using sowing date, seed rate and the application of autumn fertilizer. Lolium multiflorum Lam., L. x boucheanum Kunth and Alopecurus myosuroides Huds. were sown as indicative grass weeds. The effects of sowing date, seed rate and autumn nitrogen on crop competitive ability were correlated with rape biomass and fractional interception of photosynthetically active radiation (PAR) by the rape floral layer, to the extent that by spring there was good evidence of crop: weed replacement. An increase in seed rate up to the highest plant densities tested increased both rape biomass and competitiveness, e.g. in 2002/3, L. multiflorum head density was reduced from 539 to 245 heads/m(2) and spikelet density from 13 170 to 5960 spikelets/m(2) when rape plant density was increased from 16 to 81 plants/m(2). Spikelets/head of Lolium spp. was little affected by rape seed rate, but the length of heads of A. myosuroides was reduced by 9 % when plant density was increased from 29-51 plants/m(2). Autumn nitrogen increased rape biomass and reduced L. multiflorum head density (415 and 336 heads/m(2) without and with autumn nitrogen, respectively) and spikelet density (9990 and 8220 spikelets/m(2) without and with autumn nitrogen, respectively). The number of spikelets/head was not significantly affected by autumn nitrogen. Early sowing could increase biomass and competitiveness, but poor crop establishment sometimes overrode the effect. Where crop and weed establishment was similar for both sowing dates, a 2-week delay (i.e. early September to mid-September) increased L. multiflorum head density from 226 to 633 heads/m(2) and spikelet density from 5780 to 15 060 spikelets/m(2).
Resumo:
Three experiments conducted over two years (2002-04) at the Crops Research Unit, University of Reading, investigated competition between autumn sown oilseed rape cultivars (Brassica napus L. ssp. oleifera var. biennis (DC.) Metzg.) and Lolium multiflorum Lam., L. x boucheanum Kunth and Alopecurus myosuroides Huds., sown as indicative grass weeds. Rape cultivar (cv.) had a substantial effect on grass weed seed return. Over the six cultivars tested, L. multiflorum spikelet production ranged from just under 400 spikelets/m(2) in the presence of cv. Winner to nearly 5800 in competition with cv. Lutin. Cultivar competitiveness was associated with high biomass, large dense floral layers and early stem extension. There was some evidence of differential competitive tolerance between rape cultivars. The results suggested that rape cultivars could be screened for competitiveness by measuring floral layer interception of photosynthetic active radiation. L. x boucheanum cultivars varied in ability to compete with rape. In the absence of inter-specific competition, spikelet density was similar for Aberecho and Polly (circa 31000 spikelets/m(2)) but when grown with rape Polly outyielded Aberecho (i.e. 12 090 and 7990 spikelets/m(2) respectively).
Resumo:
Herbivore dynamics and community structure are influenced both by plant quality and the actions of natural enemies. A factorial experiment manipulating both higher and lower trophic levels was designed to explore the determinants of colony growth of the aphid Aphis jacobaeae, a specialist herbivore on ragwort Senecio jacobaea. Potential plant quality was manipulated by regular addition of NPK-fertiliser and predator pressure was reduced by interception traps; the experiment was carried out at two sites. The size and persistence of aphid colonies were measured. Fertiliser addition affected plant growth in only one site, but never had a measurable effect on aphid colony growth. In both habitats the action of insect predators dominated, imposing strong and negative effects on aphid colony performance. Ants were left unmanipulated in both sites and their performance on the aphid colonies did not significantly differ between sites or between treatments. Our results suggest that, at least for aphid herbivores on S. jacobaea, the action of generalist insect predators appears to be the dominant factor affecting colony performance and can under certain conditions even improve plant productivity.
Resumo:
Near isogenic lines (NILs) varying for reduced height (Rht) and photoperiod insensitivity (Ppd-D1) alleles in a cv. Mercia background (rht (tall), Rht-B1b, Rht-D1b, Rht-B1c, Rht8c+Ppd-D1a, Rht-D1c, Rht12) were compared for interception of photosynthetically active radiation (PAR), radiation use efficiency (RUE), above-ground biomass (AGB), harvest index (HI), height, weed prevalence, lodging and grain yield, at one field site but within contrasting (‘organic’ v ‘conventional’) rotational and agronomic contexts, in each of three years. In the final year, further NILs (rht (tall), Rht-B1b, Rht-D1b, Rht-B1c, Rht-B1b+Rht-D1b, Rht-D1b+Rht-B1c) in Maris Huntsman and Maris Widgeon backgrounds were added together with 64 lines of a doubled haploid (DH) population [Savannah (Rht-D1b) × Renesansa (Rht-8c+Ppd-D1a)]. There were highly significant genotype × system interactions for grain yield, mostly because differences were greater in the conventional system than in the organic system. Quadratic fits of NIL grain yield against height were appropriate for both systems when all NILs and years were included. Extreme dwarfing was associated with reduced PAR, RUE, AGB, HI, and increased weed prevalence. Intermediate dwarfing was often associated with improved HI in the conventional system, but not in the organic system. Heights in excess of the optimum for yield were associated particularly with reduced HI and, in the conventional system, lodging. There was no statistical evidence that optimum height for grain yield varied with system although fits peaked at 85cm and 96cm in the conventional and organic systems, respectively. Amongst the DH lines, the marker for Ppd-D1a was associated with earlier flowering, and just in the conventional system also with reduced PAR, AGB and grain yield. The marker for Rht-D1b was associated with reduced height, and again just in the conventional system, with increased HI and grain yield. The marker for Rht8c reduced height, and in the conventional system only, increased HI. When using the System × DH line means as observations grain yield was associated with height and early vegetative growth in the organic system, but not in the conventional system. In the conventional system, PAR interception after anthesis correlated with yield. Savannah was the highest yielding line in the conventional system, producing significantly more grain than several lines that out yielded it in the organic system.
Resumo:
Canopy characteristics (leaf area index, fractional light interception, extinction coefficient) of mature trees of ten clonally propagated cacao cultivars were measured over a period of 14 months at an experimental site in Bahia, Brazil. Differences in leaf area index between clones became more pronounced over time. When an approximately constant leaf area index was reached (after about nine months), LAI varied between clones from 2.8 to 4.5. Clonal differences in the relationship between leaf area index and fractional light interception implied differences in canopy architecture, as reflected by the range of extinction coefficients (mean values ranged from 0.63 for the clone TSH-565 to 0.82 for CC-10). The results demonstrate the potential for breeding more photosynthetically efficient cacao canopies.
Resumo:
Previous studies using coupled general circulation models (GCMs) suggest that the atmosphere model plays a dominant role in the modeled El Nin ̃ o–Southern Oscillation (ENSO), and that intermodel differences in the thermodynamical damping of sea surface temperatures (SSTs) are a dominant contributor to the ENSO amplitude diversity. This study presents a detailed analysis of the shortwave flux feedback (aSW) in 12 Coupled Model Intercomparison Project phase 3 (CMIP3) simulations, motivated by findings that aSW is the primary contributor to model thermodynamical damping errors. A ‘‘feedback decomposition method,’’ developed to elucidate the aSW biases, shows that all models un- derestimate the dynamical atmospheric response to SSTs in the eastern equatorial Pacific, leading to un- derestimated aSW values. Biases in the cloud response to dynamics and the shortwave interception by clouds also contribute to errors in aSW. Changes in the aSW feedback between the coupled and corresponding atmosphere-only simulations are related to changes in the mean dynamics. A large nonlinearity is found in the observed and modeled SW flux feedback, hidden when linearly cal- culating aSW. In the observations, two physical mechanisms are proposed to explain this nonlinearity: 1) a weaker subsidence response to cold SST anomalies than the ascent response to warm SST anomalies and 2) a nonlinear high-level cloud cover response to SST. The shortwave flux feedback nonlinearity tends to be underestimated by the models, linked to an underestimated nonlinearity in the dynamical response to SST. The process-based methodology presented in this study may help to correct model ENSO atmospheric biases, ultimately leading to an improved simulation of ENSO in GCMs.
Resumo:
Near-isogenic lines (NILs) of winter wheat varying for alleles for reduced height (Rht), gibberellin (GA) response and photoperiod insensitivity (Ppd-D1a) in cv. Mercia background (rht (tall), Rht-B1b, Rht-D1b, Rht-B1c, Rht8c+Ppd-D1a, Rht-D1c, Rht12) and cv. Maris Widgeon (rht (tall), Rht-D1b, Rht-B1c) backgrounds were compared to investigate main effects and interactions with tillage (plough-based, minimum-, and zero-tillage) over two years. Both minimum- and zero- tillage were associated with reduced grain yields allied to reduced harvest index, biomass accumulation, interception of photosynthetically active radiation (PAR), and plant populations. Grain yields were optimized at mature crop heights of around 740mm because this provided the best compromise between harvest index which declined with height, and above ground biomass which increased with height. Improving biomass with height was due to improvements in both PAR interception and radiation-use efficiency. Optimum height for grain yield was unaffected by tillage system or GA-sensitivity. After accounting for effects of height, GA insensitivity was associated with increased grain yields due to increased grains per spike, which was more than enough to compensate for poorer plant establishment and lower mean grain weights compared to the GA-sensitive lines. Although better establishment was possible with GA-sensitive lines, there was no evidence that this effect interacted with tillage method. We find, therefore, little evidence to question the current adoption of wheats with reduced sensitivity to GA in the UK, even as tillage intensity lessens.
Resumo:
An urban energy and water balance model is presented which uses a small number of commonly measured meteorological variables and information about the surface cover. Rates of evaporation-interception for a single layer with multiple surface types (paved, buildings, coniferous trees and/or shrubs, deciduous trees and/or shrubs, irrigated grass, non-irrigated grass and water) are calculated. Below each surface type, except water, there is a single soil layer. At each time step the moisture state of each surface is calculated. Horizontal water movements at the surface and in the soil are incorporated. Particular attention is given to the surface conductance used to model evaporation and its parameters. The model is tested against direct flux measurements carried out over a number of years in Vancouver, Canada and Los Angeles, USA. At all measurement sites the model is able to simulate the net all-wave radiation and turbulent sensible and latent heat well (RMSE = 25–47 W m−2, 30–64 and 20–56 W m−2, respectively). The model reproduces the diurnal cycle of the turbulent fluxes but typically underestimates latent heat flux and overestimates sensible heat flux in the day time. The model tracks measured surface wetness and simulates the variations in soil moisture content. It is able to respond correctly to short-term events as well as annual changes. The largest uncertainty relates to the determination of surface conductance. The model has the potential be used for multiple applications; for example, to predict effects of regulation on urban water use, landscaping and planning scenarios, or to assess climate mitigation strategies.
Resumo:
The primary role of land surface models embedded in climate models is to partition surface available energy into upwards, radiative, sensible and latent heat fluxes. Partitioning of evapotranspiration, ET, is of fundamental importance: as a major component of the total surface latent heat flux, ET affects the simulated surface water balance, and related energy balance, and consequently the feedbacks with the atmosphere. In this context it is also crucial to credibly represent the CO2 exchange between ecosystems and their environment. In this study, JULES, the land surface model used in UK weather and climate models, has been evaluated for temperate Europe. Compared to eddy covariance flux measurements, the CO2 uptake by the ecosystem is underestimated and the ET overestimated. In addition, the contribution to ET from soil and intercepted water evaporation far outweighs the contribution of plant transpiration. To alleviate these biases, adaptations have been implemented in JULES, based on key literature references. These adaptations have improved the simulation of the spatio-temporal variability of the fluxes and the accuracy of the simulated GPP and ET, including its partitioning. This resulted in a shift of the seasonal soil moisture cycle. These adaptations are expected to increase the fidelity of climate simulations over Europe. Finally, the extreme summer of 2003 was used as evaluation benchmark for the use of the model in climate change studies. The improved model captures the impact of the 2003 drought on the carbon assimilation and the water use efficiency of the plants. It, however, underestimates the 2003 GPP anomalies. The simulations showed that a reduction of evaporation from the interception and soil reservoirs, albeit not of transpiration, largely explained the good correlation between the carbon and the water fluxes anomalies that was observed during 2003. This demonstrates the importance of being able to discriminate the response of individual component of the ET flux to environmental forcing.
Resumo:
Using a water balance modelling framework, this paper analyses the effects of urban design on the water balance, with a focus on evapotranspiration and storm water. First, two quite different urban water balance models are compared: Aquacycle which has been calibrated for a suburban catchment in Canberra, Australia, and the single-source urban evapotranspiration-interception scheme (SUES), an energy-based approach with a biophysically advanced representation of interception and evapotranspiration. A fair agreement between the two modelled estimates of evapotranspiration was significantly improved by allowing the vegetation cover (leaf area index, LAI) to vary seasonally, demonstrating the potential of SUES to quantify the links between water sensitive urban design and microclimates and the advantage of comparing the two modelling approaches. The comparison also revealed where improvements to SUES are needed, chiefly through improved estimates of vegetation cover dynamics as input to SUES, and more rigorous parameterization of the surface resistance equations using local-scale suburban flux measurements. Second, Aquacycle is used to identify the impact of an array of water sensitive urban design features on the water balance terms. This analysis confirms the potential to passively control urban microclimate by suburban design features that maximize evapotranspiration, such as vegetated roofs. The subsequent effects on daily maximum air temperatures are estimated using an atmospheric boundary layer budget. Potential energy savings of about 2% in summer cooling are estimated from this analysis. This is a clear ‘return on investment’ of using water to maintain urban greenspace, whether as parks distributed throughout an urban area or individual gardens or vegetated roofs.
Resumo:
In the last decade, the growth of local, site-specific weather forecasts delivered by mobile phone or website represents arguably the fastest change in forecast consumption since the beginning of Television weather forecasts 60 years ago. In this study, a street-interception survey of 274 members of the public a clear first preference for narrow weather forecasts above traditional broad weather forecasts is shown for the first time, with a clear bias towards this preference for users under 40. The impact of this change on the understanding of forecast probability and intensity information is explored. While the correct interpretation of the statement ‘There is a 30% chance of rain tomorrow’ is still low in the cohort, in common with previous studies, a clear impact of age and educational attainment on understanding is shown, with those under 40 and educated to degree level or above more likely to correctly interpret it. The interpretation of rainfall intensity descriptors (‘Light’, ‘Moderate’, ‘Heavy’) by the cohort is shown to be significantly different to official and expert assessment of the same descriptors and to have large variance amongst the cohort. However, despite these key uncertainties, members of the cohort generally seem to make appropriate decisions about rainfall forecasts. There is some evidence that the decisions made are different depending on the communication format used, and the cohort expressed a clear preference for tabular over graphical weather forecast presentation.
Resumo:
Light and water are among essential resources required for production of photosynthates in plants. A study on the effects of weeding regimes and maize planting density on light and water use was conducted during the 2001/2 short and 2002 long rain seasons at Muguga in - the central highlands of Kenya. Weeding regimes were: weed free (W1), weedy (W2), herbicide (W3) and hand weeding twice (W4). Maize planting densities were 9 (D1) and 18 plants m-2 (D2) intercropped with Phaseolus vulgaris (beans). The experiment was laid as randomized complete block design replicated four times and repeated twice. All plots were thinned to 4 plants m-2 at tasseling stage (96 DAE) and thinnings quantified as forage. Soil moisture content (SMC), photosynthetically active radiation (PAR) interception, evapo-transpiration (ET crop), water use efficiency (WUE), and harvest index (HI), were determined. Percent PAR was higher in D2 than in D1 before thinning but higher in D1 than in D2 after thinning in both seasons. PAR interception was highest in W2 but similar in W1, W3 and W4 in both seasons. SMC was significantly lower in W2 but similar in W1, W3 and W4. D2 had lower SMC than D1 in season two. Weeding regime significantly influenced ET crop, while planting density and weeding regime significantly influenced WUE and HI. D2 maximizes water and light use for forage production but results to increased intra-specific plant competition for water and light severely before thinning (96 DAE) that reduce grain yield in dual purpose maize, relative to D1.
Resumo:
To study the impact of Amazonian forest fragmentation on the mosquito fauna, an inventory of Culicidae was conducted in the upland forest research areas of the Biological Dynamics of Forest Fragments Project located 60 km north of Manaus, Amazonas, Brazil. The culicid community was sampled monthly between February 2002 and May 2003. CDC light traps, flight interception traps, manual aspiration, and net sweeping were used to capture adult specimens along the edges and within forest fragments of different sizes (1, 10, and 100 ha), in second-growth areas surrounding the fragments and around camps. We collected 5,204 specimens, distributed in 18 genera and 160 species level taxa. A list of mosquito taxa is presented with 145 species found in the survey, including seven new records for Brazil, 16 new records for the state of Amazonas, along with the 15 morphotypes that probably represent undescribed species. No exotic species [Aedes aegypti (L.) and Aedes albopictus (Skuse)] were found within the sampled areas. Several species collected are potential vectors of Plasmodium causing human malaria and of various arboviruses. The epidemiological and ecological implications of mosquito species found are discussed, and the results are compared with other mosquito inventories from the Amazon region.
Resumo:
Este trabalho, baseado na teoria de Jean Piaget sobre o desenvolvimento do pensamento adolescente, visa continuar a mesma linha de investigação no que se refere à aquisição do conceito de probabilidade. O conceito de probabilidade na teoria piagetiana representando a intercepção do real e do possível, foi submetido, neste trabalho, a uma análise crítica e a um projeto de verificação experimental. Em termos teóricos, a crítica orientou-se para a relação entre os canais sensoriais receptores de informação e a organização do nível formal que permite elaborar relações de probabilidade. Importante papel foi atribuído ao estudo da manipulação - expressão direta da ação em seus níveis primordiais - como fator determinante de elaboração específica nas relações de probabilidade. Uma segunda vertente sociogênica do problema foi analisada em termos do nível sócio-econômico como fator que influencia o desenvolvimento do pensamento formal e especificamente a aquisição do conceito de probabilidade. Em termos de verificação experimental, constatou se a possibilidade de se definirem diversos estágios de desenvolvimento, chegando-se a classificar, de modo geral, os sujeitos em: aqueles que ainda não possuem habilidade de pensamento para solução de problema de probabilidade, aqueles que já apresentam tal habilidade, porém, são incapazes de generalização, e outros, em menor parte, que têm estabelecidas as estruturas operatórias do período lógico formal. Dentre estes grupos somente o último faz uso sistemático de estratégias corretas e corresponde aos sujeitos adolescentes do sexo masculino. Isto mostra que existe uma diferença nos resultados devido às diferenças sexuais a favor do sexo masculino e que a capacidade de lidar com relações probabilísticas se torna mais organizada e estruturada com o avanço da idade dos sujeitos. As variáveis ambientais exercem influência no rendimento do sujeito, os resultados variam de acordo com o meio socio econômico, favorecendo os de nível superior, isto é, permitindo-lhes um desenvolvimento normal.