230 resultados para Intercalation
Resumo:
The equilibrium interaction of doxorubicin and its N-acetyl derivative with a series of purine-pyrimidine alternating polydeoxynucleotides has been studied through spectrofluorometry to assess the relevance of the electrostatic contribution to DNA intercalation. The results have shown that: (a) the suppression of the positive charge on the aminosugar has: (I) a profound negative effect on the free energy of intercalation, as expected, and (II) a negligible influence on the base specificity, which supports the notion of an essentially electrostatic effect of N-acetylation on intercalation; (b) a reasonably good accord with the demands of a polyelectrolytic model, due to Friedman and Manning, is found.
Resumo:
We report the absolute values of the c ̂-axis resistivity obtained from conduction electron spin resonance (CESR) experiments at various temperatures for a graphite-AlCl3 stage 2 compound. The agreement with d.c. measurements is quite good. The temperature dependence of the c ̂-axis resistivity previously obtained from CESR for graphite-AlCl3 is revised. © 1990.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Vanadium oxide nanotubes (NTs) were synthesized by the sol-gel method followed by a long-term hydrothermal treatment. The obtained nanotubes have a multiwall structure, and 70% of vanadium ions are in the V4+ state. This percentage was derived by evaluating three components of the magnetic susceptibility; namely, (i) the paramagnetic Curie-Weiss behavior, (ii) antiferromagnetic dimers, and (iii) magnetic trimers. The as-made NTs were annealed in situ in the cavity of the electron paramagnetic resonance (EPR) spectrometer. The line shape changes irreversibly at 390 K, and the EPR susceptibility presents an anomaly at 425 K. These changes are interpreted as a partial oxidation of the V4+ ions and consequently a decrease in the concentration of the magnetic species. The quantification of the V4+ ions of the annealed NTs reveals a diminution to 39% of V4+, a weakening of the Curie-Weiss and antiferromagnetic dimers contributions, and the suppression of magnetic trimers. Vibrational studies confirm the decrease of V4+ amount. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4749417]
Resumo:
Layered double hydroxide (LDH) nanocontainers, suitable as carriers for anionic drugs, were intercalated with Pravastatin drug using magnesium-aluminum and zinc-aluminum in a M-II/Al molar ratio equal 2 and different Al3+/Pravastatin molar ratios. Postsynthesis treatments were used in order to increase the materials crystallinity. Hybrid materials were characterized by a set of physical chemical techniques: chemical elemental analysis, X-ray diffraction (XRD), mass coupled thermal analyses, vibrational infrared and Raman spectroscopies, and solid-state C-13 nuclear magnetic resonance (NMR). Results were interpreted in light of computational density functional theory (DFT) calculations performed for Sodium Pravastatin in order to assign the data obtained for the LDH intercalated materials. XRD peaks of LDH-Pravastatin material and the one-dimensional (1D) electron density map pointed out to a bilayer arrangement of Pravastatin in the interlayer region, where its associated carboxylate and vicinal hydroxyl groups are close to the positive LDH. The structural organization observed for the stacked assembly containing the unsymmetrical and bulky monoanion Pravastatin and LDH seems to be promoted by a self-assembling process, in which local interactions are maximized and chloride ion cointercalation is required. It is observed a high similarity among vibrational and C-13 NMR spectra of Na-Pravastatin and LDH-Pravastatin materials. Those features indicate that the intercalation preserves the drug structural integrity. Spectroscopic techniques corroborate the nature of the guest species and their arrangement between the inorganic layers. Changes related to carboxylate, alcohol, and olefinic moieties are observed in both vibrational Raman and C-13 NMR spectra after the drug intercalation. Thus, Pravastatin ions are forced to be arranged as head to tail through intermolecular hydrogen bonding between adjacent organic species. The thermal decomposition profile of the hybrid samples is distinct of that one observed for Na-Pravastatin salt, however, with no visible increase in the thermal behavior when the organic anion is sequestrated within LDH gap.
Resumo:
Hybrid materials were prepared by combining clay mineral (montmorillonite SWy-2 and saponite SapCa-1) and dyes extracted from the acai (Euterpe oleracea Mart.) fruit, which contains mainly anthocyanins from the 3-glucoside class, to increase the stability of the dye and facilitate its handling and storage. Clay minerals are common ingredients in therapeutic and pharmaceutical products and acai phytochemicals show disease prevention properties. The extract of the acai fruit was mixed with water suspensions of layered silicates in different proportions. The dyeclay hybrids presented incorporated organic material in amounts up to 24 wt.-%. X ray diffractometry and vibrational (FTIR and Raman) and electronic spectroscopic data showed that flavylium cations were successfully intercalated between the inorganic layers. Mass-coupled thermogravimetric analysis (TGA-MS) data showed a significant gain in the thermostability of the organic species in relation to anthocyanins in the extract. MS curves related to CO2 release (m/z = 44) are ascendant above 200 degrees C when the dye cations are confined to the inorganic structure. The radical scavenging activity of the hybrid materials was monitored by electron paramagnetic resonance (EPR) toward the stable radical DPPH (1,1-diphenyl-2-picrylhydrazyl) and compared to the activity of the acai extract. In addition to the fact that interaction with clay minerals improves the stability of the acai dyes against heat, their properties as radical scavengers are preserved after intercalation. The improvement in the properties of the nutraceutical species by intercalation by using biocompatible inorganic structures can be valuable for human therapy.
Resumo:
Sorption of aspartic and glutamic aminoacids by regeneration of calcined hydrotalcite is reported. Hydrotalcite was synthesized by coprecipitation and calcined at 773 K. Sorption experiments were performed at 298 K and 310 K, and the results reveal that at low aminoacids equilibrium concentrations, intercalation of hydroxyl anions takes place while at high equilibrium concentrations, the sorption process occur by means re-hydration and aminoacids intercalation of hydrotalcite. The results also suggested that Asp and Glu sorption is a temperature dependent process. The amount of sorbed amino acid decreases as the temperature increase. The effect is more pronounced for Glu sorption probably due to its higher hydrophobic character, which makes the sorption more difficult in comparison with sorption of Asp at higher temperature.
Resumo:
In this study, Cross-Polarization Magic-angle Spinning CP/MAS, 2D Exchange, Centerband-Only Detection of Exchange (CODEX), and Separated-Local-Field (SLF) NMR experiments were used to study the molecular dynamics of poly(ethylene glycol) (PEG) inside Hectorite/PEG intercalation compounds in both single- and double-layer configurations. The results revealed that the overall amplitude of the motions of the PEG chain in the single-layer configuration is considerably smaller than that observed for the double-layer intercalation compound. This result indicates that the effect of having the polymer chain interacting with both clay platelets is to produce a substantial decrease in the motional amplitudes of those chains. The presence of these dynamically restricted segments might be explained by the presence of anchoring points between the clay platelets and the PEG oxygen atoms, which was induced by the Na+ cations. By comparing the PEG motional amplitudes of the double-layered nanocomposites composed of polymers with different molecular weights, a decrease in the motional amplitude for the smaller PEG chain was observed, which might also be understood using the presence of anchoring points.
Resumo:
This thesis is concerned with in-situ time-, temperature- and pressure-resolved synchrotron X-ray powder diffraction investigations of a variety of inorganic compounds with twodimensional layer structures and three-dimensional framework structures. In particular, phase stability, reaction kinetics, thermal expansion and compressibility at non-ambient conditions has been studied for 1) Phosphates with composition MIV(HPO4)2·nH2O (MIV = Ti, Zr); 2) Pyrophosphates and pyrovanadates with composition MIVX2O7 (MIV = Ti, Zr and X = P, V); 3) Molybdates with composition ZrMo2O8. The results are compiled in seven published papers and two manuscripts. Reaction kinetics for the hydrothermal synthesis of α-Ti(HPO4)2·H2O and intercalation of alkane diamines in α-Zr(HPO4)2·H2O was studied using time-resolved experiments. In the high-temperature transformation of γ-Ti(PO4)(H2PO4)·2H2O to TiP2O7 three intermediate phases, γ'-Ti(PO4)(H2PO4)·(2-x)H2O, β-Ti(PO4)(H2PO4) and Ti(PO4)(H2P2O7)0.5 were found to crystallise at 323, 373 and 748 K, respectively. A new tetragonal three-dimensional phosphate phase called τ-Zr(HPO4)2 was prepared, and subsequently its structure was determined and refined using the Rietveld method. In the high-temperature transformation from τ-Zr(HPO4)2 to cubic α-ZrP2O7 two new orthorhombic intermediate phases were found. The first intermediate phase, ρ-Zr(HPO4)2, forms at 598 K, and the second phase, β-ZrP2O7, at 688 K. Their respective structures were solved using direct methods and refined using the Rietveld method. In-situ high-pressure studies of τ-Zr(HPO4)2 revealed two new phases, tetragonal ν-Zr(HPO4)2 and orthorhombic ω-Zr(HPO4)2 that crystallise at 1.1 and 8.2 GPa. The structure of ν-Zr(HPO4)2 was solved and refined using the Rietveld method. The high-pressure properties of the pyrophosphates ZrP2O7 and TiP2O7, and the pyrovanadate ZrV2O7 were studied up to 40 GPa. Both pyrophosphates display smooth compression up to the highest pressures, while ZrV2O7 has a phase transformation at 1.38 GPa from cubic to pseudo-tetragonal β-ZrV2O7 and becomes X-ray amorphous at pressures above 4 GPa. In-situ high-pressure studies of trigonal α-ZrMo2O8 revealed the existence of two new phases, monoclinic δ-ZrMo2O8 and triclinic ε-ZrMo2O8 that crystallises at 1.1 and 2.5 GPa, respectively. The structure of δ-ZrMo2O8 was solved by direct methods and refined using the Rietveld method.
Resumo:
In this work we have investigated the intercalation of electron-donors between NbS2 slabs in Nb-based layer sulfides. Two series of Sr substituted Nb-based misfit sulfides belonging to the 1.5Q/1H and 1Q/1H series of misfit layer compounds have been synthesised. For large lanthanides (Ln=La, Ce), only the 1Q/1H compounds formed whereas for smaller lanthanides and yttrium, both types of phases can be obtained. The crystal structure of misfit sulfide (Pr0.55Sr0.45S)1.15NbS2 has been refined using the composite approach. In the Q-slab, Pr-atoms are partly replaced by Sr with a random distribution over one cation position. The crystal structure of misfit sulfide [(Sm1/3Sr2/3S)1.5]1.15NbS2 belonging to the 1.5Q/1H series have also been determined. The obtained results suggest a preferred occupancy of the cation positions in the slab where Sr atoms mainly occupy positions on the exterior of the slab while Sm atoms are in the center of the slab. The (La1-xSrxS)1.15NbS2 solid solution (0.1<x<0.9) has also been studied. It was found that the maximum value of Sr substitution is 40-50% and therefore, the minimal value of charge transfer to stabilize this structure type is about 0.6ē per Nb atom. An attempt to synthesize SrxNbS2 (0.1≤x≤0.5) intercalates was made but single phases were not obtained and increasing the temperature from 1000оС to 1100оС leads to the decomposition of these intercalates. Single crystals of Sr0.22Nb1.05S2 and Sr0.23NbS2 were found and their structures were determined. The structures belong to two different types of packings with statistical distribution of Sr between layers. A new superconducting sulfide, "EuNb2S5", was investigated by ED and HREM and its structure model consisting of Nb7S14 and (Eu3S4)2 slabs alternating along the c-axis is suggested. An attempt to suggest a model for the structure of "SrNb2S5" by means of X-ray single crystal diffraction was made. The proposed structure consists of two types of slabs: a Nb7S14 and a [Sr6(NbS4)2S] slab with niobium in tetrahedral coordination. It is shown that "SrNb2S5" and "EuNb2S5" are have similar structures. For the first time, single crystals of the complex sulfide BaNb0.9S3 have also been studied by means of X-ray single crystal diffraction. The single crystal refinement and EDX analysis showed the existence of cation vacancies at the niobium position. BaNb0.9S3 has also been studied by ED and no superstructure was found which implies that and the vacancies are statistically distributed. No improvement of the magnetic properties of the studied compounds was observed in comparison to NbS2.
Resumo:
Synthese und Charakterisierung neuer funktionalisierter Mono- und Bis-tetrahydro-pyrrolo[3,4-b]carbazole als potentielle DNA-Liganden In der Carbazol-Chemie sollen neue anellierte Verbindungen mit potentieller DNA-Affinität und damit verbundener Antitumoraktivität entwickelt werden. Auf molekularer Ebene sind DNA-Interkalation oder DNA-Rinnenbindung zu erwarten. Darauf aufbauend wurden in Anlehnung an literaturbekannte Cytostatika Mono- und Bis-tetrahydropyrrolo[3,4-b]carbazole synthetisiert, die zur Entwicklung neuer Leitstrukturen bzw. -substanzen beitragen können.In der vorliegenden Arbeit wurde als synthetische Schlüsselreaktion die in unserem Arbeitkreis etablierte Indol-2,3-chinodimethan-Diels-Alder-Reaktion mit geeigneten cyclischen Mono- und Bismaleinimiden als Dienophilen weiterführend genutzt. Auf Grund des Aufbaus von künftigen Struktur-Wirkungsbeziehungen wurden variable Linker zwischen die beiden zu verbindenden Pyrrolotetrahydrocarbazole eingeführt. Diese waren aliphatischer und diamidischer Natur. Diamidische Strukturelemente wurden im Hinblick auf die Entwicklung neuer Peptidomimetika eingeführt. Deren Synthese gelang zum einen über die gemischte Säureanhydrid-Methode und zum anderen über die Azolid-Methode. Die Struktursicherung der als Cycloaddukte erhaltenen Tetrahydrocarbazole erfolgte mittels Standardverfahren (1D-, 2D-NMR-, IR-Spektroskopie und Massenspektrometrie).Enantiomere bzw. Diastereomere chiraler Wirkstoffe unterscheiden sich stark in ihren pharmakologischen Eigenschaften, deshalb müssen Verfahren entwickelt werden, um diese Substanzen gegebenenfalls auch in enantiomerenreiner Form darstellen zu können. Die Racemate der Monotetrahydrocarbazole und die Racemate sowie die dazu diastereomeren meso-Formen der Bistetrahydrocarbazole, die bei der Reaktion entstehen, konnten erstmals mittels chiraler HPLC analytisch getrennt werden.In einer der Synthese ergänzten theoretischen Studie wurde Computer-Molecular-Modelling zur Problematik der Diels-Alder-Reaktion durchgeführt, außerdem wurden kraftfeld-mechanische Berechnungen zur Konformationsanalyse der 'einfachen' Monotetrahydro-carbazole herangezogen und darauf aufbauend schließlich einfache DNA-Docking-Experimente zur ersten Abschätzung des DNA-Binde-Verhaltens der synthetisierten Verbindungen vorgenommen.
Resumo:
Ziel der vorliegenden Arbeit war die Untersuchung von Struktur und Dynamik in Polymer-Ton-Nanokompositen mittels EPR-Spektroskopie; damit sollten ein Beitrag zur Analyse der Tensidschicht in solchen Systemen geleistet und die Ergebnisse anderer Messmethoden ergänzt werden. Die Tensidschicht in Polymer-Ton-Nanokompositen nimmt großen Einfluss auf das System, denn sie bestimmt die Wechselwirkung zwischen Ton und Polymer: Damit hydrophiler Ton gut mit hydrophobem Polymer (hier Polystyrol) mischbar ist, muss das Schichtsilikat zunächst mit Tensiden organisch-modifiziert werden; dies geschieht durch Kationenaustausch der Natriumionen im Ton gegen Tenside. Um mit Hilfe der EPR einen Einblick in die Tensidschicht zu gewinnen, muss etwa 1% der zur Tonmodifizierung eingesetzten Amphiphile spinmarkiert sein. So gelang es im Rahmen dieser Arbeit, Tenside mit verschiedenen Kopfgruppen, nämlich Trimethylammonium- bzw. Trimethylphosphoniumtenside, zu synthetisieren und sie an verschiedenen Positionen ihrer hydrophoben Alkylkette mit einem Nitroxidradikal zu markieren. Das Nitroxidradikal diente als Spinsonde für die EPR-Experimente. Neben der Synthese verschiedener, spinmarkierter Amphiphile, der anschließenden Darstellung organisch-modifizierten Tons (Kationenaustausch) und verschiedener Polymer-Ton-Nanokomposite (Schmelzinterkalation) wurden alle Proben mittels EPR-Spektroskopie untersucht; dabei wurden sowohl cw- als auch gepulste Messtechniken eingesetzt. Aus cw-Experimenten ging hervor, dass die Dynamik der gesamten Tensidschicht mit der Temperatur zunimmt und die Mobilität der hydrophoben Tensidalkylkette mit wachsendem Abstand zu ihrer Kopfgruppe wächst. Zugabe von Polymer behindert bei steigender Temperatur das Anschwellen des Tons bei Aufschmelzen der Tensidschicht; die Dynamik des Systems ist eingeschränkt. Mit Hilfe gepulster EPR-Messungen (ENDOR und ESEEM), die Informationen über Abstände bzw. Kontakt in den untersuchten Systemen lieferten, ließ sich ein Strukturmodell der Polymer-Ton-Nanokomposite skizzieren, das Vorstellungen anderer, älterer Methoden unterstützt: Hierbei richten sich die Tenside in Multischichten unterschiedlicher Mobilität parallel zur Tonoberfläche aus.
Resumo:
Zusammenfassung Nanokomposite aus Polymeren und Schichtsilikaten werden zumeist auf der Basis natürlicher Tone wie Montmorillonit hergestellt. Für NMR- und EPR-Untersuchungen der Tensidschicht, die das Silikat mit dem Polymer kompatibilisiert, ist der Eisengehalt natürlicher Tone jedoch abträglich, weil er zu einer Verkürzung der Relaxationszeiten und zu einer Linienverbreiterung in den Spektren führt. Dieses Problem konnte überwunden werden, indem als Silikatkomponente eisenfreies, strukturell wohldefiniertes Magadiit hydrothermal synthetisiert und für die Kompositbildung eingesetzt wurde. Die Morphologie des Magadiits wurde durch Rasterelektronenmikroskopie charakterisiert und der Interkalationsgrad von schmelzinterkalierten Polymer-Nanokompositen wurde durch Weitwinkelröntgenstreuung bestimmt. Polymere mit Carbonylgruppen scheinen leichter zu interkalieren als solche ohne Carbonylgruppen. Polycaprolacton interkalierte sowohl in Oragnomagadiite auf der Basis von Ammoniumtensiden als auch in solche auf der Basis von Phosphoniumtensiden. Die Dynamik auf einer Nanosekundenzeitskala und die Struktur der Tensidschicht wurden mittels ortsspezifisch spinmarkierter Tensidsonden unter Nutzung von Dauerstrich- (CW) und Puls-Methoden der elektronenparamagnetischen Resonanzspektroskopie (EPR) untersucht. Zusätzlich wurde die statische 2H-Kernmagnetresonanz (NMR) an spezifisch deuterierten Tensiden angewendet, um die Tensiddynamik auf einer komplementären Zeitskala zwischen Mikrosekunden und Millisekunden zu erfassen. Sowohl die CW-EPR- als auch die 2H-NMR-Ergebnisse zeigen eine Beschleunigung der Tensiddynamik durch Interkalation von Polycaprolacton auf, während sich in den nichtinterkalierten Mikrokompositen mit Polystyrol die Tensiddynamik verlangsamt. Die Rotationskorrelationszeiten und Aktivierungsenergien offenbaren verschiedene Regime der Tensiddynamik. In Polystyrol-Mikrokompositen entspricht die Übergangstemperatur zwischen den Regimen der Glasübergangstemperatur von Polystyrol, während sie in Polycaprolacton-Nanokompositen bei der Schmelztemperatur von Polycaprolacton liegt. Durch die erhebliche Verlängerung der Elektronenspin-Relaxationszeiten bei Verwendung von eisenfreiem Magadiit können Messdaten hoher Qualität mit Puls-EPR-Experimenten erhalten werden. Insebsondere wurden die Vier-Puls-Elektron-Elektron-Doppelresonanz (DEER), die Elektronenspinechoenveloppenmodulation (ESEEM) und die Elektronen-Kern-Doppelresonanz (ENDOR) an spinmarkierten sowie spezifisch deuterierten Tensiden angewandt. Die ENDOR-Ergebnisse legen ein Model der Tensidschicht nahe, in dem zusätzlich zu den Oberflächenlagen auf dem Silikat eine wohldefinierte mittlere Lage existiert. Dieses Modell erklärt auch Verdünnungseffekte durch das Polymer in Kompositen mit Polycaprolacton und Polystyrol. Die umfangreiche Information aus den Magnetresonanztechniken ergänzt die Information aus konventionellen Charakterisierungstechniken wie Röntgendiffraktion und Transmissionselektronenmikroskopie und führt so zu einem detaillierteren Bild der Struktur und Dynamik der Tensidschicht in Nanokompositen aus Polymeren und Schichtsilikaten.
Resumo:
Es werden zwei komplementäre "bottom-up" Methoden präsentiert, die den kontrollierten Einbau von "intelligenten" planaren Defekten in selbstorganisierte kolloidale photonische Kristalle (KPKs) ermöglichen. Die Defektschicht basiert auf einem funktionellen, nanometer-skalierten dünnen Film, der entweder durch schichtweise ("layer-by-layer") Selbstorganisation und Mikrokontakttransferübertragung oder durch Aufschleudern und einer KPK-Opferfüllung hergestellt wird. Die entwickelten Techniken gestatten die Integration von maßgeschneiderten dünnen Defektfilmen bestehend aus einer enorm großen Vielfalt an Materialien; sie sind kostengünstig und können im größeren Maßstab angewendet werden. Optische Untersuchungen zeigen einen engen, durch den Defekt hervorgerufenen Transmissionszustand in der photonischen Bandlücke. Die Defektwellenlänge hängt von der optischen Dicke der Defektschicht ab. Aktives Schalten der Defektwellenlänge wird erreicht, indem Defektschichten aus Makromolekülen hergestellt werden, die über externe Erreger wie Licht, Temperatur, Redoxzyklen und mechanischen Druck adressiert werden können. Die Ergebnisse der Untersuchungen sind im Einklang mit separat durchgeführten Ellipsometrie-Messungen und theoretischen "scalar wave approximation"-Berechnungen. Darüber hinaus werden KPKs mit funktionellen biomolekularen Defekten vorgestellt. Über Verschiebungen der Defektmode können DNA-Konformationsänderungen, die enantioselektive Einlagerung eines chiralen Antitumormedikaments sowie Enzymaktivitäten optisch beobachtet werden. Die Einlagerung von fluoreszierenden Farbstoffen und Quantenpunkten in Defekt-KPKs führt zu einer eindeutigen, durch die photonische Bandlücke und den Defektzustand hervorgerufenen Modifizierung der Photolumineszenz (PL)-Spektren. Schaltbare PL-Modifizierungen werden detektiert, wenn adressierbare Defekt-KPKs verwendet werden.
Resumo:
Die hochspezifische Funktionalisierung von Proteinen und Peptiden kann durch milde reduktive Spaltung der lösungsmittelzugänglichen Disulfidbrücken und anschließende Rückverbrückung durch den Einbau sogenannter Linkermoleküle über einen konsekutiven Eliminierungs-Additionsprozess verwirklicht werden. Die Erweiterung des Linkerportfolios stellte in erster Instanz die Entwicklung von verschieden funktionalisierten Systemen dar, welche als hochflexible Kernbausteine für den Aufbau komplexer Architekturen dienten. Das Verständnis für die Reaktivität und Reversibilität der Thioladdition an die Mono-und Bissulfone in Abhängigkeit des Substituenten in p-Position konnte durch Variation von Parametern wie Lösungsmittel oder pH-Wert für intelligentes Produktdesign genutzt werden. Heterokonjugate zweier Biomoleküle mit ungepaartem Cystein wurden durch die Kombination von Maleinimid- und Bissulfonchemie innerhalb eines Linkermoleküls realisiert. Polymer-Peptid-Konjugate wurden einerseits über die grafting to Methode durch Modifizierung von Somatostatin mit PEGbissulfonen und anderseits durch grafting from unter Verwendung eines zuvor synthetisierten ATRP-Makroinitiators dargestellt. Multivalente Konjugate konnten durch die Synthese von hochsymmetrischen Tetra- sowie Hexasulfonen und anschließende Umsetzung mit Somatostatin erhalten werden. Die Polyinterkalatorpolymere, die durch lebende radikalische Polymerisation eines Bissulfidmonomers generiert wurden, wurden mit Glutathion umgesetzt. Durch die Interkalation von p-Ethinyl sowie p-Iodmonosulfon in die Disulfidbrücke von Somatostatin konnte erfolgreich gezeigt werden, dass die Rückverbrückung unter Rezyklisierung gelang. Die biologische Integrität wurde durch die Modifikation nicht beeinträchtigt und die erfolgreiche Aufnahme wurde nur bei den rezeptorpositiven Zellen (CAPAN-2) beobachtet. Das artifizielle Iodderivat im Vergleich zum nativen Somatostatin ein erhöhtes Potential zur Apoptoseinduktion. Die Somatostatinderivate präsentierten sich somit als attraktive potentielle Therapeutika.