905 resultados para Intensive care units pediatric
Resumo:
PURPOSE: Unlike in the outpatient setting, delivery of aerosols to critically ill patients may be considered complex, particularly in ventilated patients, and benefits remain to be proven. Many factors influence aerosol delivery and recommendations exist, but little is known about knowledge translation into clinical practice. METHODS: Two-week cross-sectional study to assess the prevalence of aerosol therapy in 81 intensive and intermediate care units in 22 countries. All aerosols delivered to patients breathing spontaneously, ventilated invasively or noninvasively (NIV) were recorded, and drugs, devices, ventilator settings, circuit set-up, humidification and side effects were noted. RESULTS: A total of 9714 aerosols were administered to 678 of the 2808 admitted patients (24 %, CI95 22-26 %), whereas only 271 patients (10 %) were taking inhaled medication before admission. There were large variations among centers, from 0 to 57 %. Among intubated patients 22 % (n = 262) received aerosols, and 50 % (n = 149) of patients undergoing NIV, predominantly (75 %) inbetween NIV sessions. Bronchodilators (n = 7960) and corticosteroids (n = 1233) were the most frequently delivered drugs (88 % overall), predominantly but not exclusively (49 %) administered to patients with chronic airway disease. An anti-infectious drug was aerosolized 509 times (5 % of all aerosols) for nosocomial infections. Jet-nebulizers were the most frequently used device (56 %), followed by metered dose inhalers (23 %). Only 106 (<1 %) mild side effects were observed, despite frequent suboptimal set-ups such as an external gas supply of jet nebulizers for intubated patients. CONCLUSIONS: Aerosol therapy concerns every fourth critically ill patient and one-fifth of ventilated patients.
Resumo:
The objective of this study is to retrospectively report the results of interventions for controlling a vancomycin-resistant enterococcus (VRE) outbreak in a tertiary-care pediatric intensive care unit (PICU) of a University Hospital. After identification of the outbreak, interventions were made at the following levels: patient care, microbiological surveillance, and medical and nursing staff training. Data were collected from computer-based databases and from the electronic prescription system. Vancomycin use progressively increased after March 2008, peaking in August 2009. Five cases of VRE infection were identified, with 3 deaths. After the interventions, we noted a significant reduction in vancomycin prescription and use (75% reduction), and the last case of VRE infection was identified 4 months later. The survivors remained colonized until hospital discharge. After interventions there was a transient increase in PICU length-of-stay and mortality. Since then, the use of vancomycin has remained relatively constant and strict, no other cases of VRE infection or colonization have been identified and length-of-stay and mortality returned to baseline. In conclusion, we showed that a bundle intervention aiming at a strict control of vancomycin use and full compliance with the Hospital Infection Control Practices Advisory Committee guidelines, along with contact precautions and hand-hygiene promotion, can be effective in reducing vancomycin use and the emergence and spread of vancomycin-resistant bacteria in a tertiary-care PICU.
Resumo:
The objective of this study is to retrospectively report the results of interventions for controlling a vancomycin-resistant enterococcus (VRE) outbreak in a tertiary-care pediatric intensive care unit (PICU) of a University Hospital. After identification of the outbreak, interventions were made at the following levels: patient care, microbiological surveillance, and medical and nursing staff training. Data were collected from computer-based databases and from the electronic prescription system. Vancomycin use progressively increased after March 2008, peaking in August 2009. Five cases of VRE infection were identified, with 3 deaths. After the interventions, we noted a significant reduction in vancomycin prescription and use (75% reduction), and the last case of VRE infection was identified 4 months later. The survivors remained colonized until hospital discharge. After interventions there was a transient increase in PICU length-of-stay and mortality. Since then, the use of vancomycin has remained relatively constant and strict, no other cases of VRE infection or colonization have been identified and length-of-stay and mortality returned to baseline. In conclusion, we showed that a bundle intervention aiming at a strict control of vancomycin use and full compliance with the Hospital Infection Control Practices Advisory Committee guidelines, along with contact precautions and hand-hygiene promotion, can be effective in reducing vancomycin use and the emergence and spread of vancomycin-resistant bacteria in a tertiary-care PICU.
Resumo:
OBJECTIVE: To examine a once daily dosing regimen of netilmicin in critically ill neonates and children. DESIGN AND SETTING: Open, prospective study on 81 antibiotic courses in 77 critically ill neonates and children, hospitalized in a multidisciplinary pediatric/neonatal intensive care unit. For combined empiric therapy (aminoglycoside and beta-lactam), netilmicin was given intravenously over 5 min once every 24 h. The dose ranged from 3.5-6 mg/kg, mainly depending upon gestational and postnatal age. Peak levels were determined by immunoassay 30 min after the second dose and trough levels 1 h before the third and fifth dose or after adaptation of dosing. RESULTS: All peak levels (n = 28) were clearly above 12 mumol/l (mean 22, range 13-41 mumol/l). Eighty-nine trough levels were within desired limits (< 4 mumol/l) and 11 (11%) above 4 mumol/l, mostly in conjunction with impaired renal function. CONCLUSIONS: Optimal peak and trough levels of netilmicin can be achieved by once daily dosing, adapted to gestational/postnatal age and renal function.
Resumo:
The first manuscript, entitled "Time-Series Analysis as Input for Clinical Predictive Modeling: Modeling Cardiac Arrest in a Pediatric ICU" lays out the theoretical background for the project. There are several core concepts presented in this paper. First, traditional multivariate models (where each variable is represented by only one value) provide single point-in-time snapshots of patient status: they are incapable of characterizing deterioration. Since deterioration is consistently identified as a precursor to cardiac arrests, we maintain that the traditional multivariate paradigm is insufficient for predicting arrests. We identify time series analysis as a method capable of characterizing deterioration in an objective, mathematical fashion, and describe how to build a general foundation for predictive modeling using time series analysis results as latent variables. Building a solid foundation for any given modeling task involves addressing a number of issues during the design phase. These include selecting the proper candidate features on which to base the model, and selecting the most appropriate tool to measure them. We also identified several unique design issues that are introduced when time series data elements are added to the set of candidate features. One such issue is in defining the duration and resolution of time series elements required to sufficiently characterize the time series phenomena being considered as candidate features for the predictive model. Once the duration and resolution are established, there must also be explicit mathematical or statistical operations that produce the time series analysis result to be used as a latent candidate feature. In synthesizing the comprehensive framework for building a predictive model based on time series data elements, we identified at least four classes of data that can be used in the model design. The first two classes are shared with traditional multivariate models: multivariate data and clinical latent features. Multivariate data is represented by the standard one value per variable paradigm and is widely employed in a host of clinical models and tools. These are often represented by a number present in a given cell of a table. Clinical latent features derived, rather than directly measured, data elements that more accurately represent a particular clinical phenomenon than any of the directly measured data elements in isolation. The second two classes are unique to the time series data elements. The first of these is the raw data elements. These are represented by multiple values per variable, and constitute the measured observations that are typically available to end users when they review time series data. These are often represented as dots on a graph. The final class of data results from performing time series analysis. This class of data represents the fundamental concept on which our hypothesis is based. The specific statistical or mathematical operations are up to the modeler to determine, but we generally recommend that a variety of analyses be performed in order to maximize the likelihood that a representation of the time series data elements is produced that is able to distinguish between two or more classes of outcomes. The second manuscript, entitled "Building Clinical Prediction Models Using Time Series Data: Modeling Cardiac Arrest in a Pediatric ICU" provides a detailed description, start to finish, of the methods required to prepare the data, build, and validate a predictive model that uses the time series data elements determined in the first paper. One of the fundamental tenets of the second paper is that manual implementations of time series based models are unfeasible due to the relatively large number of data elements and the complexity of preprocessing that must occur before data can be presented to the model. Each of the seventeen steps is analyzed from the perspective of how it may be automated, when necessary. We identify the general objectives and available strategies of each of the steps, and we present our rationale for choosing a specific strategy for each step in the case of predicting cardiac arrest in a pediatric intensive care unit. Another issue brought to light by the second paper is that the individual steps required to use time series data for predictive modeling are more numerous and more complex than those used for modeling with traditional multivariate data. Even after complexities attributable to the design phase (addressed in our first paper) have been accounted for, the management and manipulation of the time series elements (the preprocessing steps in particular) are issues that are not present in a traditional multivariate modeling paradigm. In our methods, we present the issues that arise from the time series data elements: defining a reference time; imputing and reducing time series data in order to conform to a predefined structure that was specified during the design phase; and normalizing variable families rather than individual variable instances. The final manuscript, entitled: "Using Time-Series Analysis to Predict Cardiac Arrest in a Pediatric Intensive Care Unit" presents the results that were obtained by applying the theoretical construct and its associated methods (detailed in the first two papers) to the case of cardiac arrest prediction in a pediatric intensive care unit. Our results showed that utilizing the trend analysis from the time series data elements reduced the number of classification errors by 73%. The area under the Receiver Operating Characteristic curve increased from a baseline of 87% to 98% by including the trend analysis. In addition to the performance measures, we were also able to demonstrate that adding raw time series data elements without their associated trend analyses improved classification accuracy as compared to the baseline multivariate model, but diminished classification accuracy as compared to when just the trend analysis features were added (ie, without adding the raw time series data elements). We believe this phenomenon was largely attributable to overfitting, which is known to increase as the ratio of candidate features to class examples rises. Furthermore, although we employed several feature reduction strategies to counteract the overfitting problem, they failed to improve the performance beyond that which was achieved by exclusion of the raw time series elements. Finally, our data demonstrated that pulse oximetry and systolic blood pressure readings tend to start diminishing about 10-20 minutes before an arrest, whereas heart rates tend to diminish rapidly less than 5 minutes before an arrest.
Resumo:
The death of an infant/child is one of the most devastating experiences for parents and immediately throws them into crisis. Spiritual and religious coping strategies may help parents with their loss. The purposes of this longitudinal study were to: (1) describe differences in bereaved parents' use of spiritual coping strategies across racial/ethnic and religious groups, mother/father dyads, and time—one (T1) and three (T2) months after the infant's/child's death in the neonatal (NICU) or pediatric intensive care unit (PICU), and (2) test the relationship between spiritual coping strategies and grief, mental health, and personal growth for mothers and fathers at T1 and T2. A sample of 126 Hispanic, Black/African American, and White parents of 119 deceased children completed the Spiritual Coping Strategies scale, Beck Depression Inventory-II, Impact of Events-Revised, Hogan Grief Reaction Checklist, and a demographic form at T1 and T2. Controlling for race and religion, spiritual coping was a strong predictor of lower grief, better mental health, and greater personal growth for mothers at T1 and T2 and lower grief for fathers at T1. The findings of this study will guide bereaved parents to effective strategies to help them cope with their early grief.
Resumo:
Background: Tracheostomy was first observed in Egyptian drawings in 3600 BC and performed frequently during the 1800’s diphtheria epidemic. Objectives: The aim of this study was to elucidate the indications, complications, mortality rate, and the effect of pediatric tracheostomy on length of PICU or hospital stay. Materials and Methods: Demographic characteristics, diagnosis at admission, duration of ventilation of 152 patients were analyzed retrospectively. Results: The most common tracheostomy indication was prolonged intubation. The mean duration of mechanical ventilation before tracheostomy was 23.8 days. Forty five percent of the tracheostomy procedures were performed at bedside. Neither the place nor the age had any effect on the development of complications (P = 0.701, P = 0.622). The procedure enabled 62% of the patients to be discharged from hospital. Conclusions: Tracheostomy facilitates discharge and weaning of mechanical ventilation. Although the timing of tracheostomy has to be determined for each individual patient, three weeks of ventilation seems to be a suitable period for tracheostomy. Tracheostomy can be performed at bedside safely but patient selection should be made carefully.
Resumo:
BACKGROUND: Multiple interventions were made to optimize the medication process in our intensive care unit (ICU). 1 Transcriptions from the medical order form to the administration plan were eliminated by merging both into a single document; 2 the new form was built in a logical sequence and was highly structured to promote completeness and standardization of information; 3 frequently used drug names, approved units, and fixed routes were pre-printed; 4 physicians and nurses were trained with regard to the correct use of the new form. This study was aimed at evaluating the impact of these interventions on clinically significant types of medication errors. METHODS: Eight types of medication errors were measured by a prospective chart review before and after the interventions in the ICU of a public tertiary care hospital. We used an interrupted time-series design to control the secular trends. RESULTS: Over 85 days, 9298 lines of drug prescription and/or administration to 294 patients, corresponding to 754 patient-days were collected and analysed for the three series before and three series following the intervention. Global error rate decreased from 4.95 to 2.14% (-56.8%, P < 0.001). CONCLUSIONS: The safety of the medication process in our ICU was improved by simple and inexpensive interventions. In addition to the optimization of the prescription writing process, the documentation of intravenous preparation, and the scheduling of administration, the elimination of the transcription in combination with the training of users contributed to reducing errors and carried an interesting potential to increase safety.
Resumo:
Data on fungemia epidemiology and antifungal susceptibility of isolates from children are scarce, leading frequently to pediatric empirical treatment based on available adult data. The present study was designed to update the epidemiological, mycological, and in vitro susceptibility data on fungal isolates from children with fungemia in Spain. All fungemia episodes were identified prospectively by blood culture over 13 months at 30 hospitals. Tests of susceptibility to amphotericin B, flucytosine, fluconazole, itraconazole, posaconazole, voriconazole, anidulafungin, caspofungin, and micafungin were performed at participant institutions by a microdilution colorimetric method. New species-specific clinical breakpoints for fluconazole, voriconazole, and echinocandins were also applied. A total of 203 episodes of fungemia in 200 children were identified. A higher proportion of fungal isolates was from general wards than intensive care units (ICU). Candida parapsilosis (46.8%), Candida albicans (36.5%), Candida tropicalis (5.9%), Candida glabrata (3.9%), and Candida guilliermondii (2.5%) were the leading species. C. parapsilosis was the predominant species except in neonates. C. albicans was the most frequent in neonatal ICU settings (51.9%). Intravascular catheter (79.3%), surgery (35%), prematurity (30%), and neutropenia (11%) were the most frequent predisposing factors. Most Candida isolates (95.1%) were susceptible to all antifungals. When the new species-specific clinical breakpoints were applied, all C. parapsilosis isolates were susceptible to echinocandins except one, which was micafungin resistant. This is the largest published series of fungemia episodes in the pediatric setting. C. parapsilosis is the most prevalent species in Spain, followed by C. albicans and C. tropicalis. Resistance to azole and echinocandin agents is extremely rare among Candida species. The fluconazole resistance rate in Spain has decreased in the last 10 years.
Resumo:
Objectives Medical futility at the end of life is a growing challenge to medicine. The goals of the authors were to elucidate how clinicians define futility, when they perceive life-sustaining treatment (LST) to be futile, how they communicate this situation and why LST is sometimes continued despite being recognised as futile. Methods The authors reviewed ethics case consultation protocols and conducted semi-structured interviews with 18 physicians and 11 nurses from adult intensive and palliative care units at a tertiary hospital in Germany. The transcripts were subjected to qualitative content analysis. Results Futility was identified in the majority of case consultations. Interviewees associated futility with the failure to achieve goals of care that offer a benefit to the patient's quality of life and are proportionate to the risks, harms and costs. Prototypic examples mentioned are situations of irreversible dependence on LST, advanced metastatic malignancies and extensive brain injury. Participants agreed that futility should be assessed by physicians after consultation with the care team. Intensivists favoured an indirect and stepwise disclosure of the prognosis. Palliative care clinicians focused on a candid and empathetic information strategy. The reasons for continuing futile LST are primarily emotional, such as guilt, grief, fear of legal consequences and concerns about the family's reaction. Other obstacles are organisational routines, insufficient legal and palliative knowledge and treatment requests by patients or families. Conclusion Managing futility could be improved by communication training, knowledge transfer, organisational improvements and emotional and ethical support systems. The authors propose an algorithm for end-of-life decision making focusing on goals of treatment.
Resumo:
BACKGROUND: Pediatric intensive care patients represent a population at high risk for drug-related problems. There are few studies that compare the activity of clinical pharmacists between countries. OBJECTIVE: To describe the drug-related problems identified and interventions by four pharmacists in a pediatric cardiac and intensive care unit. SETTING: Four pediatric centers in France, Quebec, Switzerland and Belgium. METHOD: This was a six-month multicenter, descriptive and prospective study conducted from August 1, 2009 to January 31, 2010. Drug-related problems and clinical interventions were compiled from four pediatric centers in France, Quebec, Switzerland and Belgium. Data on patients, drugs, intervention, documentation, approval and estimated impact were compiled. MAIN OUTCOME MEASURE: Number and type of drug-related problems encountered in a large pediatric inpatient population. RESULTS: A total of 996 interventions were recorded: 238 (24 %) in France, 278 (28 %) in Quebec, 351 (35 %) in Switzerland and 129 (13 %) in Belgium. These interventions targeted 270 patients (median 21 months old, 53 % male): 88 (33 %) in France, 56 (21 %) in Quebec, 57 (21 %) in Switzerland and 69 (26 %) in Belgium. The main drug-related problems were inappropriate administration technique (29 %), untreated indication (25 %) and supra-therapeutic dose (11 %). The pharmacists' interventions were mostly optimizing the mode of administration (22 %), dose adjustment (20 %) and therapeutic monitoring (16 %). The two major drug classes that led to interventions were anti-infectives for systemic use (23 %) and digestive system and metabolism drugs (22 %). Interventions mainly involved residents and all clinical staff (21 %). Among the 878 (88 %) proposed interventions requiring physician approval, 860 (98 %) were accepted. CONCLUSION: This descriptive study illustrates drug-related problems and the ability of clinical pharmacists to identify and resolve them in pediatric intensive care units in four French-speaking countries.
Resumo:
Background: We evaluated the outcome of newborns admitted in the neonatal Intensive Care Unit (ICU) in Diadema, Brazil. Methods: We evaluated 72 newborns, data were extracted from research forms, newborns` hospital records, mothers interviews, domiciliary inquiry made with the responsible for the newborn care, and paediatric accompaniment cards. Results: 48.93% presented low birth weight, 48% were considered to have normal birth weight and 2% had a birth weight higher than 4000g. Concerning gestational age, 57.44% were younger than 37 weeks old. During hospitalisation, newborn had appointments with doctors from other specialties (inter-appointments), around 40% were cardiologists. After hospital discharge 82.98% were referred to local primary health care units, and the main specialities were cardiology and neurology. Among the newborns evaluated 85.11% were accompanied by paediatric health care units. Conclusion: The implementation of a specialised newborn health accompaniment program in Brazil after ICU discharge is important for positive outcomes regarding newborns growth and development.
Resumo:
The medical training model is currently immersed in a process of change. The new paradigm is intended to be more effective, more integrated within the healthcare system, and strongly oriented towards the direct application of knowledge to clinical practice. Compared with the established training system based on certification of the completion of a series or rotations and stays in certain healthcare units, the new model proposes a more structured training process based on the gradual acquisition of specific competences, in which residents must play an active role in designing their own training program. Training based on competences guarantees more transparent, updated and homogeneous learning of objective quality, and which can be homologated internationally. The tutors play a key role as the main directors of the process, and institutional commitment to their work is crucial. In this context, tutors should receive time and specific formation to allow the evaluation of training as the cornerstone of the new model. New forms of objective summative and training evaluation should be introduced to guarantee that the predefined competences and skills are effectively acquired. The free movement of specialists within Europe is very desirable and implies that training quality must be high and amenable to homologation among the different countries. The Competency Based training in Intensive Care Medicine in Europe program is our main reference for achieving this goal. Scientific societies in turn must impulse and facilitate all those initiatives destined to improve healthcare quality and therefore specialist training. They have the mission of designing strategies and processes that favor training, accreditation and advisory activities with the government authorities.
Resumo:
Background. Nosocomial infections are a source of concern for many hospitals in the United States and worldwide. These infections are associated with increased morbidity, mortality and hospital costs. Nosocomial infections occur in ICUs at a rate which is five times greater than those in general wards. Understanding the reasons for the higher rates can ultimately help reduce these infections. The literature has been weak in documenting a direct relationship between nosocomial infections and non-traditional risk factors, such as unit staffing or patient acuity.^ Objective. To examine the relationship, if any, between nosocomial infections and non-traditional risk factors. The potential non-traditional risk factors we studied were the patient acuity (which comprised of the mortality and illness rating of the patient), patient days for patients hospitalized in the ICU, and the patient to nurse ratio.^ Method. We conducted a secondary data analysis on patients hospitalized in the Medical Intensive Care Unit (MICU) of the Memorial Hermann- Texas Medical Center in Houston during the months of March 2008- May 2009. The average monthly values for the patient acuity (mortality and illness Diagnostic Related Group (DRG) scores), patient days for patients hospitalized in the ICU and average patient to nurse ratio were calculated during this time period. Active surveillance of Bloodstream Infections (BSIs), Urinary Tract Infections (UTIs) and Ventilator Associated Pneumonias (VAPs) was performed by Infection Control practitioners, who visited the MICU and performed a personal infection record for each patient. Spearman's rank correlation was performed to determine the relationship between these nosocomial infections and the non-traditional risk factors.^ Results. We found weak negative correlations between BSIs and two measures (illness and mortality DRG). We also found a weak negative correlation between UTI and unit staffing (patient to nurse ratio). The strongest positive correlation was found between illness DRG and mortality DRG, validating our methodology.^ Conclusion. From this analysis, we were able to infer that non-traditional risk factors do not appear to play a significant role in transmission of infection in the units we evaluated.^