810 resultados para Insulin resistance.
Resumo:
Background: Metabolic outcomes of obesity and its associated disorders may not be equivalent across ethnicity and diabetes status. Aim: In this paper, we examined the association of abdominal obesity, by ethnicity and diabetes status, for indicators of glucose metabolism in Blacks. Methods: A cross sectional study was conducted in Haitian Americans (n= 186) and African Americans (n= 148) with and without type 2 diabetes mellitus (T2DM). Student’s t-test and Chi-squared test were used to assess differences in mean and proportion values between ethnicities with and without type 2 diabetes mellitus. Relationship between insulin resistance, ethnicity, diabetes status, abdominal obesity, and adiponectin levels were analyzed by analysis of covariance while controlling for confounding variables. Results:Haitian American participants were older (P = .032), had higher fasting plasma glucose (P = .036), and A1C (P = .016), but had lower levels of Hs-CRP (P < .001), insulin and HOMA2-IR and lower abdominal obesity (P = .030), than African Americans. Haitian Americans had significantly lower HOMA2-IR (P = .008) than African Americans when comparing both ethnicities with T2DM, high abdominal obesity, and adiponectin levels lower than the median ( Conclusion: The clinical significance of observed differences in insulin resistance, abdominal obesity, and adiponectin levels between Haitian Americans and African Americans could assist in forming public health policies that are ethnic specific.
Resumo:
Insulin resistance (IR) and impaired insulin secretion contribute to type 2 diabetes and cardiovascular disease. Both are associated with changes in the circulating metabolome, but causal directions have been difficult to disentangle. We combined untargeted plasma metabolomics by liquid chromatography/mass spectrometry in three non-diabetic cohorts with Mendelian Randomization (MR) analysis to obtain new insights into early metabolic alterations in IR and impaired insulin secretion. In up to 910 elderly men we found associations of 52 metabolites with hyperinsulinemic-euglycemic clamp-measured IR and/or β-cell responsiveness (disposition index) during an oral glucose tolerance test. These implicated bile acid, glycerophospholipid and caffeine metabolism for IR and fatty acid biosynthesis for impaired insulin secretion. In MR analysis in two separate cohorts (n = 2,613) followed by replication in three independent studies profiled on different metabolomics platforms (n = 7,824 / 8,961 / 8,330), we discovered and replicated causal effects of IR on lower levels of palmitoleic acid and oleic acid. A trend for a causal effect of IR on higher levels of tyrosine reached significance only in meta-analysis. In one of the largest studies combining "gold standard" measures for insulin responsiveness with non-targeted metabolomics, we found distinct metabolic profiles related to IR or impaired insulin secretion. We speculate that the causal effects on monounsaturated fatty acid levels could explain parts of the raised cardiovascular disease risk in IR that is independent of diabetes development.
Resumo:
We report a case of a 55-year-old woman who was evaluated for multiple episodes of late postprandial hypoglycaemia. We diagnosed her condition as insulin autoimmune syndrome (Hirata disease) because of a high insulin autoantibody (IAA) titre in association with high levels of plasmatic insulin and hypoglycaemia in a patient with no history of exogenous insulin administration and the exclusion of other causes of late postprandial hypoglycaemia.
Resumo:
Background: The different body components may contribute to the development of insulin resistance and type 2 diabetes mellitus. The aim of the present study was to examine the association of fat mass and fat free mass indices with markers of insulin resistance, independently of each other and giving, at the same time, gender-specific information in a wide cohort of European adolescents. Methods: A cross-sectional study in a school setting was conducted in 925 (430 males) adolescents (14.9 ± 1.2 years). Weight, height, anthropometric, bioimpedance and blood parameters were measured. Indices for fat mass and fat free mass, and homeostatic model assessment (HOMA) were calculated. Multiple regression analyses were performed adjusting for several confounders including fat free mass and fat mass when possible. Results: Indices of fat mass were positively associated with HOMA (all p < 0.01) after adjusting for all the confounders including fat free mass indices, in both sexes. Fat free mass indices were associated with HOMA, in both males and females, after adjusting for center, pubertal status, socioeconomic status and cardiorespiratory fitness, but the associations disappear when including fat mass indices in the adjustment's model. Conclusion: Fat mass indices derived from different methods are positively associated with insulin resistance independently of several confounders including fat free mass indices. In addition, the relationship of fat free mass with insulin resistance is influenced by the amount of fat mass in European adolescents. Nevertheless, future studies should focus not only on the role of fat mass, but also on other body components such as fat free mass because its role could vary depending of the level and distribution of fat mass.
Resumo:
Background: Vaspin is a newly-identified adipocytokine associated with insulin resistance (IR). Objective: The aim of this study was to investigate the correlation between plasma vaspin concentrations and IR and determine whether this association is affected by body composition, physical activity and pubertal stage in adolescents. Methods: Were studied 484 Brazilian adolescents aged 10-14 years whose anthropometric, clinical, biochemical, and lifestyle measurements were analized. We evaluated the correlation between vaspin and risk factors for IR in adolescents with normal and high body fat percentage (%BF) and did a logistic regression to calculate the odds ratio for IR according to vaspin quartiles sex specific for the sample. Results: Vaspin was positively correlated with IR in adolescents with high %BF (r = 0.23, p = 0.003). The logistic regression analysis adjusted for sex, age, BMI, and pubertal stage showed that adolescents in the 2nd (OR = 0.43, 95% CI = 0.23-0.80, p = 0.008) and 3rd (OR = 0.46, 95% CI = 0.25-0.85, p = 0.014) quartile of vaspin concentration had a lower risk for IR. When the model was adjusted for %BF and physical activity, the association remained statically significant only for adolescents in the 2nd quartile. Conclusion: Vaspin was correlated positively with risk factors associated with insulin metabolism in adolescents with high %BF. Vaspin was associated with a reduced risk of IR independently of BMI and pubertal stage and the association was influenced by body fat and physical activity in these adolescents.
Resumo:
BACKGROUND:Previous epidemiological investigations of associations between dietary glycemic intake and insulin resistance have used average daily measures of glycemic index (GI) and glycemic load (GL). We explored multiple and novel measures of dietary glycemic intake to determine which was most predictive of an association with insulin resistance.METHODS:Usual dietary intakes were assessed by diet history interview in women aged 42-81 years participating in the Longitudinal Assessment of Ageing in Women. Daily measures of dietary glycemic intake (n = 329) were carbohydrate, GI, GL, and GL per megacalorie (GL/Mcal), while meal based measures (n = 200) were breakfast, lunch and dinner GL; and a new measure, GL peak score, to represent meal peaks. Insulin resistant status was defined as a homeostasis model assessment (HOMA) value of >3.99; HOMA as a continuous variable was also investigated.RESULTS:GL, GL/Mcal, carbohydrate (all P < 0.01), GL peak score (P = 0.04) and lunch GL (P = 0.04) were positively and independently associated with insulin resistant status. Daily measures were more predictive than meal-based measures, with minimal difference between GL/Mcal, GL and carbohydrate. No significant associations were observed with HOMA as a continuous variable.CONCLUSION:A dietary pattern with high peaks of GL above the individual's average intake was a significant independent predictor of insulin resistance in this population, however the contribution was less than daily GL and carbohydrate variables. Accounting for energy intake slightly increased the predictive ability of GL, which is potentially important when examining disease risk in more diverse populations with wider variations in energy requirements.
Resumo:
Advanced prostate cancer is a common and generally incurable disease. Androgen deprivation therapy is used to treat advanced prostate cancer with good benefits to quality of life and regression of disease. Prostate cancer invariably progresses however despite ongoing treatment, to a castrate resistant state. Androgen deprivation is associated with a form of metabolic syndrome, which includes insulin resistance and hyperinsulinaemia. The mitogenic and anti-apoptotic properties of insulin acting through the insulin and hybrid insulin/IGF-1 receptors seem to have positive effects on prostate tumour growth. This pilot study was designed to assess any correlation between elevated insulin levels and progression to castrate resistant prostate cancer. Methods: 36 men receiving ADT for advanced prostate cancer were recruited, at various stages of their treatment, along with 47 controls, men with localised prostate cancer pre-treatment. Serum measurements of C-peptide (used as a surrogate marker for insulin production) were performed and compared between groups. Correlation between serum C-peptide level and time to progression to castrate resistant disease was assessed. Results: There was a significant elevation of C-peptide levels in the ADT group (mean = 1639pmol/L)) compared to the control group (mean = 1169pmol/L), with a p-value of 0.025. In 17 men with good initial response to androgen deprivation, a small negative trend towards earlier progression to castrate resistance with increasing C-peptide level was seen in the ADT group (r = -0.050), however this did not reach statistical significance (p>0.1). Conclusions: This pilot study confirms an increase in serum C-peptide levels in men receiving ADT for advance prostate cancer. A non-significant, but negative trend towards earlier progression to castrate resistance with increasing C-peptide suggests the need for a formal prospective study assessing this hypothesis.
Resumo:
Insulin has cardiovascular actions and patients with essential hypertension display insulin resistance. A cross-sectional study of the R1 RFLP of the insulin receptor gene (INSR) was carried out in 67 hypertensive (HT) and 75 normotensive (NT) subjects whose parents had a similar blood pressure status at age ≥50. The frequency of the minor (+) allele was 0.31 in HTs and 0.44 in NTs, and the difference between observed alleles in all subjects in each group was significant (χ2 = 4.8, P<0.05). Allele frequencies of a BglI RFLP of the insulin gene, however, did not differ between the HT and NT groups. The data thus provide evidence in favour of an association of HT with a polymorphism at the INSR locus (19p 13.3-13.2), so implicating this locus, and possibly a genetic variant of the insulin receptor itself, in HT.
Resumo:
Tumour necrosis factor (TNF)alpha is implicated in the relationship between obesity and insulin resistance/ type 2 diabetes. In an effort to understand this association better we (i) profiled gene expression patterns of TNF, TNFR1 and TNFR2 and (ii) investigated the effects of TNF on glucose uptake in isolated adipocytes and adipose tissue explants from omental and subcutaneous depots from lean, overweight and obese individuals. TNF expression correlated with expression of TNFR2, but not TNFR1, and TNF and TNFR2 expression increased in obesity. TNFR1 expression was higher in omental than in subcutaneous adipocytes. Expression levels of TNF or either receptor did not differ between adipocytes from individuals with central and peripheral obesity. TNF only suppressed glucose uptake in insulin-stimulated subcutaneous tissue and this suppression was only observed in tissue from lean subjects. These data support a relationship between the TNF system and body mass index (BMI), but not fat distribution, and suggest depot specificity of the TNF effect on glucose uptake. Furthermore, adipose tissue from obese subjects already appears insulin 'resistant' and this may be a result of the increased TNF levels.
Resumo:
Compared to other species insulin dysregulation in equids is poorly understood. Hyperinsulinemia causes laminitis, a significant and often lethal disease affecting the pedal bone/hoof wall attachment site. Until recently, hyperinsulinemia has been considered a counter-regulatory response to insulin resistance (IR), but there is growing evidence to support a gastrointestinal etiology. Incretin hormones released from the proximal intestine, glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide, augment insulin secretion in several species, but require investigation in horses. This study investigated peripheral and gut-derived factors impacting insulin secretion by comparing the response to intravenous (IV) and oral D-glucose. Oral and IV tests were performed in 22 ponies previously shown to be insulin dysregulated, of which only 15 were classified as IR (IV test). In a more detailed study, nine different ponies received four treatments: D-glucose orally, D-glucose IV, oats and Workhorse-mix. Insulin, glucose and incretin concentrations were measured before and after each treatment. All nine ponies showed similar IV responses, but five were markedly hyper-responsive to oral D-glucose and four were not. Insulin responsiveness to oral D-glucose was strongly associated with blood glucose concentrations and oral glucose bioavailability, presumably driven by glucose absorption/distribution, as there was no difference in glucose clearance rates. Insulin was also positively associated with active GLP-1 following D-glucose and grain. This study has confirmed a functional enteroinsular axis in ponies which likely contributes to insulin dysregulation that may predispose them to laminitis. Further, IV tests for IR are not reliable predictors of the oral response to dietary non-structural carbohydrate.
Resumo:
Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10−8). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms.
Resumo:
beta-arrestin-1 is an adaptor protein that mediates agonist-dependent internalization and desensitization of G-protein-coupled receptors (GPCRs) and also participates in the process of heterologous desensitization between receptor tyrosine kinases and GPCR signaling. In the present study, we determined whether beta-arrestin-1 is involved in insulin-induced insulin receptor substrate 1 (IRS-1) degradation. Overexpression of wild-type (WT) beta-arrestin-1 attenuated insulin-induced degradation of IRS-1, leading to increased insulin signaling downstream of IRS-1. When endogenous beta-arrestin-1 was knocked down by transfection of beta-arrestin-1 small interfering RNA, insulin-induced IRS-1 degradation was enhanced. Insulin stimulated the association of IRS-1 and Mdm2, an E3 ubiquitin ligase, and this association was inhibited to overexpression of WT beta-arrestin-1, which led by decreased ubiquitin content of IRS-1, suggesting that both beta-arrestin-1 and IRS-1 competitively bind to Mdm2. In summary, we have found the following: (i) beta-arrestin-1 can alter insulin signaling by inhibiting insulin-induced proteasomal degradation of IRS-1; (ii) beta-arrestin-1 decreases the rate of ubiquitination of IRS-1 by competitively binding to endogenous Mdm2, an E3 ligase that can ubiquitinate IRS-1; (iii) dephosphorylation of S412 on beta-arrestin and the amino terminus of beta-arrestin-1 are required for this effect of beta-arrestin on IRS-1 degradation; and (iv) inhibition of beta-arrestin-1 leads to enhanced IRS-1 degradation and accentuated cellular insulin resistance.
Resumo:
Glucose-dependent insulinotropic polypeptide (GIP) has significant potential in diabetes therapy due to its ability to serve as a glucose-dependent activator of insulin secretion. However, its biological activity is severely compromised by the ubiquitous enzyme dipeptidylpeptidase IV (DPP IV), which removes the N-terminal Tyr(1)-Ala(2) dipeptide from GIP. Therefore, 2 novel N-terminal Ala(2)-substituted analogs of GIP, with Ala substituted by 2-aminobutyric acid (Abu) or sarcosine (Sar), were synthesized and tested for metabolic stability and biological activity both in vitro and in vivo. Incubation with DPP IV gave half-lives for degradation of native GIP, (Abu(2))GIP, and (Sar(2))GIP to be 2.3, 1.9, and 1.6 hours, respectively, while in human plasma, the half-lives were 6.2, 7.6, and 5.4 hours, respectively. In Chinese hamster lung (CHL) cells expressing the cloned human GIP receptor, native GIP, (Abu(2))GIP, and (Sar(2))GIP dose-dependently stimulated cyclic adenosine monophosphate (camp) production with EC50 values of 18.2, 38.5, and 54.6 nmol/L, respectively. In BRIN-BD11 cells, both (Abu(2))GIP and (Sar(2))GIP (10(-13) to 10(-8) mol/L) dose-dependently stimulated insulin secretion with significantly enhanced effects at 16.7 mmol/L compared with 5.6 mmol/L glucose. In obese diabetic (ob/ob) mice, GIP and (Sar(2))GIP significantly increased (1.4-fold to 1.5-fold; P <.05) plasma insulin concentrations, whereas (Abu(2))GIP exerted only minor effects. Changes in plasma glucose were small reflecting the severe insulin resistance of this mutant. The present data show that substitution of the penultimate N-terminal Ala(2) in GIP by Abu or Sar results in analogs with moderately reduced metabolic stability and biological activity in vitro, but with preserved biological activity in vivo. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
Insulin resistance and diabetes might promote neurodegenerative disease, but a molecular link between these disorders is unknown. Many factors are responsible for brain growth, patterning, and survival, including the insulin-insulin-like growth factor (IGF)-signaling cascades that are mediated by tyrosine phosphorylation of insulin receptor substrate (IRS) proteins. Irs2 signaling mediates peripheral insulin action and pancreatic beta-cell function, and its failure causes diabetes in mice. In this study, we reveal two important roles for Irs2 signaling in the mouse brain. First, disruption of the Irs2 gene reduced neuronal proliferation during development by 50%, which dissociated brain growth from Irs1-dependent body growth. Second, neurofibrillary tangles containing phosphorylated tau accumulated in the hippocampus of old Irs2 knock-out mice, suggesting that Irs2 signaling is neuroprotective. Thus, dysregulation of the Irs2 branch of the insulin-Igf-signaling cascade reveals a molecular link between diabetes and neurodegenerative disease.
Effects of nateglinide on the secretion of glycated insulin and glucose tolerance in type 2 diabetes
Resumo:
Aims: Glycation of insulin has been demonstrated within pancreatic beta-cells and the resulting impaired bioactivity may contribute to insulin resistance in diabetes. We used a novel radioimmunoassay to evaluate the effect of nateglinide on plasma concentrations of glycated insulin and glucose tolerance in type 2 diabetes. Methods. Ten patients (5 M/5 F, age 57.8 +/- 1.9 years, HbA(1c), 7.6 +/- 0.5%,, fasting plasma glucose 9.4 +/- 1.2 mmol/l, creatinine 81.6 +/- 4.5 mumol/l) received oral nateglinide 120 mg or placebo, 10 min prior to 75 g oral glucose in a random, single blind, crossover design, 1 week apart. Blood samples were taken for glycated insulin, glucose, insulin and C-peptide over 225 min. Results: Plasma glucose and glycated insulin responses were reduced by 9% (P = 0.005) and 38% (P = 0.047), respectively, following nateglinide compared with placebo. Corresponding AUC measures for insulin and C-peptide were enhanced by 36% (P = 0.005) and 25% (P = 0.007) by nateglinide. Conclusions: Glycated insulin in type 2 diabetes is reduced in response to the insulin secretagogue nateglinide, resulting in preferential release of native insulin. Since glycated insulin exhibits impaired biological activity, reduced glycated insulin release may contribute to the anti hyperglycaemic action of nateglinide. (C) 2003 Elsevier Ireland Ltd. All rights reserved.