953 resultados para Insects - Physiology
Resumo:
Countless numbers of insects migrate within and between continents every year, and yet we know very little about the ultimate reasons and proximate mechanisms that would explain these mass movements. Here we suggest that perhaps the most important reason for insects to migrate is to hedge their reproductive bets. By spreading their breeding efforts in space and time, insects distribute their offspring over a range of environmental conditions. We show how the study of individual long-distance movements of insects may contribute to a better understanding of migration. In the future, advances in tracking methods may enable the global surveillance of large insects such as desert locusts.
Resumo:
P>The current paper provides an overview of current knowledge on the structure and function of the eye. It describes in depth the different parts of the eye that are involved in the ocular manifestations seen in the mucopolysaccharidoses (MPS). The MPS are a group of rare inheritable lysosomal storage disorders characterized by the accumulation of glycosaminoglycans (GAGs) in cells and tissues all over the body, leading to widespread tissue and organ dysfunction. GAGs also tend to accumulate in several tissues of the eye, leading to various ocular manifestations affecting both the anterior (cornea, conjunctiva) and the posterior parts (retina, sclera, optic nerve) of the eye.
Resumo:
FMRFamide-like peptides (FLPs) are a diverse group of neuropeptides that are expressed abundantly in nematodes. They exert potent physiological effects on locomotory, feeding and reproductive musculature and also act as neuromodulators. However, little is known about the specific expression patterns and functions of individual peptides. The current study employed rapid amplification of cDNA ends-polymerase chain reaction (RACE-PCR) to characterize flp genes from infective juveniles of the root knot nematodes, Meloidogyne incognita and Meloidogyne minor. The peptides identified from these transcripts are sequelogs of FLPs from the free-living nematode, Caenorhabditis elegans; the genes have therefore been designated as Mi-flp-1, Mi-flp-7, Mi-flp-12, Mm-flp-12 and Mi-flp-14. Mi-flp-1 encodes five FLPs with the common C-terminal moiety, NFLRFamide. Mi-flp-7 encodes two copies of APLDRSALVRFamide and APLDRAAMVRFamide and one copy of APFDRSSMVRFamide. Mi-flp-12 and Mm-flp-12 encode the novel peptide KNNKFEFIRFamide (a longer version of RNKFEFIRFamide found in C. elegans). Mi-flp-14 encodes a single copy of KHEYLRFamide (commonly known as AF2 and regarded as the most abundant nematode FLP), and a single copy of the novel peptide KHEFVRFamide. These FLPs share a high degree of conservation between Meloidogyne species and nematodes from other clades, including those of humans and animals, perhaps suggesting a common neurophysiological role which may be exploited by novel drugs. FLP immunoreactivity was observed for the first time in Meloidogyne, in the circumpharyngeal nerve ring, pharyngeal nerves and ventral nerve cord. Additionally, in situ hybridization revealed Mi-flp-12 expression in an RIR-like neuron and Mi-flp-14 expression in SMB-like neurons, respectively. These localizations imply physiological roles for FLP-12 and FLP-14 peptides, including locomotion and sensory perception.
Resumo:
Previous studies have shown that low levels of copper (down to 0.8 muM) induce bradycardia in the blue mussel (Mytilus edulis) and that this is not caused by prolonged Valve closure. The aim of this study was to determine the precise mechanism responsible. To establish if copper was directly affecting heart cell physiology, recordings of contractions from isolated ventricular strips were made using an isometric force transducer, in response to copper concentrations (as CuCl2) ranging between 1 muM and 1 mM. Inhibition of mechanical activity only occurred at 1 mM copper, suggesting that the copper-induced bradycardia observed in whole animals cannot be attributed to direct cardiotoxicity. Effects of copper on the cardiac nerves were subsequently examined. Following removal of visceral ganglia (from where the cardiac nerves originate), exposure to 12.5 muM copper had no effect on the heart rate of whole animals. The effect of copper on the heart rate of mussels could not be abolished by depletion of the monoamine content of the animal using reserpine. However, pre-treatment of the animals with alpha -bungarotoxin considerably reduced the sensitivity of the heart to copper. These results indicated that the influence of copper on the heart of M. edulis might be mediated by a change in the activity of cholinergic nerves to heart. In the final experiments, mussels were injected with either benzoquinonium or D-tubocurarine, prior to copper exposure, in an attempt to selectively block the inhibitory or excitatory cholinoreceptors of the heart. Only benzoquinonium decreased the susceptibility of the heart to copper, suggesting that copper affects the cardiac activity of blue mussels by stimulating inhibitory cholinergic nerves to the heart. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The occurrence of classical neurotransmitter molecules and numerous peptidic messenger molecules in nematode nervous systems indicate that although structurally simple, nematode nervous systems are chemically complex. Thus far, studies on one nematode neuropeptide family, namely the FMRFamide-related peptides (FaRPs), have revealed an unexpected variety of neuropeptide structures in both free-living and parasitic species. To date 23 nematode FaRPs have been structurally characterized including 12 from Ascaris suum, 8 from Caenorhabditis elegans, 5 from Panagrellus redivivus and 1 from Haemonchus contortus. Ten FaRP-encoding genes have been identified in Caenorhabditis elegans. However, the full complement of nematode neuronal messengers has yet to be described and unidentified nematode FaRPs await detection. Preliminary characterization of the actions of nematode neuropeptides on the somatic musculature and neurones of A. suum has revealed that these peptidic messengers have potent and complex effects. Identified complexities include the biphasic effects of KNEFIRFamide/KHEYLRFamide (AF1/2; relaxation of tone followed by oscillatory contractile activity) and KPNFIRFamide (PF4; rapid relaxation of tone followed by an increase in tone), the diverse actions of KSAYMRFamide (AF8 or PF3; relaxes dorsal muscles and contracts ventral muscles) and the apparent coupling of the relaxatory effects of SDPNFLRFamide/SADPNFLRFamide (PF1/PF2) to nitric oxide release. Indeed, all of the nematode FaRPs which have been tested on somatic muscle strips of A. suum have actions which are clearly physiologically distinguishable. Although we are a very long way from understanding how the actions of these peptides are co-ordinated, not only with those of each other but also with those of the classical transmitter molecules, to control nematode behaviour, their abundance coupled with their diversity of structure and function indicates a hitherto unidentified sophistication to nematode neuromuscular intergration.
Biodegradation by members of the genus Rhodococcus: Biochemistry, physiology, and genetic adaptation
Resumo:
Premature infants are at risk for adverse motor outcomes, including cerebral palsy and developmental coordination disorder. The purpose of this study was to examine the relationship of antenatal, perinatal, and postnatal risk factors for abnormal development of the corticospinal tract, the major voluntary motor pathway, during the neonatal period. In a prospective cohort study, 126 premature neonates (24-32 weeks' gestational age) underwent serial brain imaging near birth and at term-equivalent age. With diffusion tensor tractography, mean diffusivity and fractional anisotropy of the corticospinal tract were measured to reflect microstructural development. Generalized estimating equation models examined associations of risk factors on corticospinal tract development. The perinatal risk factor of greater early illness severity (as measured by the Score for Neonatal Acute Physiology-II [SNAP-II]) was associated with a slower rise in fractional anisotropy of the corticospinal tract (P = 0.02), even after correcting for gestational age at birth and postnatal risk factors (P = 0.009). Consistent with previous findings, neonatal pain adjusted for morphine and postnatal infection were also associated with a slower rise in fractional anisotropy of the corticospinal tract (P = 0.03 and 0.02, respectively). Lessening illness severity in the first hours of life might offer potential to improve motor pathway development in premature newborns.
Resumo:
Nutrition is critical to immune defence and parasite resistance, which not only affects individual organisms, but also has profound ecological and evolutionary consequences. Nutrition and immunity are complex traits that interact via multiple direct and indirect pathways, including the direct effects of nutrition on host immunity but also indirect effects mediated by the host's microbiota and pathogen populations. The challenge remains, however, to capture the complexity of the network of interactions that defines nutritional immunology. The aim of this paper is to discuss the recent findings in nutritional research in the context of immunological studies. By taking examples from the entomological literature, we argue that insects provide a powerful tool for examining the network of interactions between nutrition and immunity due to their tractability, short lifespan and ethical considerations. We describe the relationships between dietary composition, immunity, disease and microbiota in insects, and highlight the importance of adopting an integrative and multi-dimensional approach to nutritional immunology.
Resumo:
The understanding of how mutations of the cystic fibrosis gene results in recurrent infection and the development of bronchiectasis is now well established. This review examines aspects of lung pathophysiology specifically, abnormal mucociliary clearance, inflammation and infection which are the basis of the daily symptoms encountered by people with cystic fibrosis. Other components of the lung epithelium and their potential contribution to cystic fibrosis disease are discussed. Therapeutic interventions which aim to target abnormal mucociliary clearance are summarized. © 2011 Elsevier Ltd.
Resumo:
Some animals change their feeding behaviour when infected with parasites, seeking out substances that enhance their ability to overcome infection. This 'self-medication' is typically considered to involve the consumption of toxins, minerals or secondary compounds. However, recent studies have shown that macronutrients can influence the immune response and that pathogen-challenged individuals can self-medicate by choosing a diet rich in protein and low in carbohydrates. Infected individuals might also reduce food intake when infected (i.e. illness-induced anorexia). Here, we examine macronutrient self-medication and illness-induced anorexia in caterpillars of the African armyworm (Spodoptera exempta) by asking how individuals change their feeding decisions over the time course of infection with a baculovirus. We measured self-medication behaviour across several full-sib families to evaluate the plasticity of diet choice and underlying genetic variation. Larvae restricted to diets high in protein (P) and low in carbohydrate (C) were more likely to survive a virus challenge than those restricted to diets with a low P : C ratio. When allowed free choice, virus-challenged individuals chose a higher protein diet than controls. Individuals challenged with either a lethal or sublethal dose of virus increased the P : C ratio of their chosen diets. This was mostly due to a sharp decline in carbohydrate intake, rather than an increased intake of protein, reducing overall food intake, consistent with an illness-induced anorexic response. Over time the P : C ratio of the diet decreased until it matched that of controls. Our study provides the clearest evidence yet for dietary self-medication using macronutrients and shows that the temporal dynamics of feeding behaviour depends on the severity and stage of the infection. The strikingly similar behaviour shown by different families suggests that self-medication is phenotypically plastic and not a consequence of genetically based differences in diet choice between families. © 2013 British Ecological Society.